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Abstract: Coupled systems that contain rotating elements are typical in physical, biological 
and engineering applications and for years have been the subject of intensive studies. One 
problem of scientific interest, which among others occurs in such systems is the phenomenon 
of synchronization of different rotating parts. Despite different initial conditions, after a 
sufficiently long transient, the rotating parts move in the same way – complete 
synchronization, or a permanent constant shift is established between their displacements, i.e., 
the angles of rotation - phase synchronization. Synchronization occurs due to dependence of 
the periods of rotating elements motion and the displacement of the base on which these 
elements are mounted.  

We review the studies on the synchronization of rotating pendula and compare them 
with the results obtained for oscillating pendula. As an example we consider the dynamics of 
the system consisting of n pendula mounted on the movable beam. The pendula are excited by 
the external torques which are inversely proportional to the angular velocities of the pendula. 
As the result of such excitation each pendulum rotates around its axis of rotation. It has been 
assumed that all pendula rotate in the same direction or in the opposite directions. We 
consider the case of slowly rotating pendulums and estimate the influence of the gravity on 
their motion. We classify the synchronous states of the identical pendula and observe how the 
parameters mismatch can influence them. We give evidence that synchronous states are robust 
as they exist in the wide range of system parameters and can be observed in a simple 
experiments. 
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Nomenclature  
α [rad/s]   -angular frequency of pendulum rotation; 
αx [rad/s]   -angular frequency of the beam-pendula system oscillations-rotations; 
βi [rad],    -phase shift between pendula; 
Δ   - logarithmic decrement of damping 
Φi ,Φ [rad]  - amplitudes of oscillations of the pendulum; 

ii  , , ϕϕϕ &&&i   - displacement [rad], velocity [rad/s] and acceleration [rad/s2] of the i-th 
pendulum; 

i00  ,ϕϕ &i    - initial conditions of the i-th pendulum motion; 
ξ   - scale factor of pendulums; 
ሶ߮   [rad/s]  - velocity of i-th pendulum; 
ሶ߮ ே[rad/s]  - nominal velocity of i-th pendulum; 

 
A [m]   - amplitude of parametric excitation; 
Ab [m/s2]  - amplitude of beam acceleration; 
b [rad]   - amplitude of harmonic component of rotation angle; 
cϕi [Nsm]  - damping coefficient of the i-th pendulum damper;  
cx [Ns/m]  - damping coefficient of the damper between the beam and the basis; 
T, U [Nm]  - kinetic and potential energy; 
F [N]   - resulting force with which pendulums act on the beam; 
g [m/s2]  - gravitational acceleration; 
kx [N/m]  - stiffness coefficient of the spring between the beam and the basis; 
l, li [m]   - length of the pendulum; 
mb [kg]  - mass of the beam; 
m, mi [kg]  - mass of the pendulum; 
n   - number of pendulums in the system; 
N   - number of periods T of pendula oscillations (NT - unit of time);  
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ii ppp 1i0  ϕ&−= [Nm] - driving torque; 
s[m]   - length of the arc of the circle; 
t [s]   - time; 
U [kg]   - global mass of the system (beam plus pendula); 

beamW [Nm]  - energy dissipated by the beam during one period of motion;  
DAMP

iW [Nm]  - energy dissipated by the i-th pendulum during one period of motion; 
DRIVE

beamW [Nm]  - energy delivered to the beam during one period of motion; 
DRIVE

iW [Nm]  - energy delivered to the i-th pendulum during one period of motion; 
SYN

iW [Nm] - energy delivered from the i-th pendulum to the beam during one 
period of motion; 

X [m]   - amplitude of the beam oscillations;  
X1i, X3i [m] - amplitudes of first and third harmonic component of the beam 

oscillations; 
xxx &&&  , ,     - displacement [m], velocity [m/s] and acceleration [m/s2] of the beam; 

00  , xx &     - initial values of displacement and velocity of the beam; 
* In this paper all values of the parameters and state variables are given in the above units. For 
simplicity of the presentation the units are omitted in the text.  
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1. Introduction 
A pendulum is an archetype for strongly nonlinear dynamical systems, which naturally has 
been given a great deal of attention in literature [1,50 and ref. within]. In the last few decades, 
particularly since the experimental verification of chaotic motion of pendulum [46], there has 
been an explosion of work in this area.  
 The plane pendulum is a constrained system: a mass point m moves on a circle of 
constant radius l, as sketched in Figure 1. We denote by φ(t) the angle that measures the 
deviation of the pendulum from the vertical line and by s(t)=lφ(t) the length of the 
corresponding arc on the circle. We then have kinematic T and potential U energies given 
respectively as  ܶ ൌ ଵ

ଶ
݈݉ଶ ሶ߮ ଶ and ܷ ൌ െ݈݉݃ሾܿݏ ߮ െ 1ሿ, where g is the acceleration due to 

the gravity. Let us introduce the constant  

ߝ ൌ
ܶ  ܷ
2݈݉݃ ൌ  

1
2 ൬

1
2߱ଶ ሶ߮ ଶ  1 െ ݏܿ ߮൰, 

where ܽଶ ൌ 

 [3]. For ε<1 the pendulum performs oscillations around the stable equilibrium 

point φ=0, while for ε>1 the pendulum always swings in one direction, i.e., it rotates either 
clockwise or counterclockwise. The boundary ε=1 between these qualitatively different 
domains is a singular value and corresponds to the motion where the pendulum reaches the 
uppermost position but cannot swing beyond it.  This singular trajectory is called the 
separatrix, it separates the domain of oscillatory and rotational behavior. 
 

 
 

Figure 1. The planar pendulum. 
 
 

 
 

Figure 2. Physical model of the pendulum: (a-c) pendulum excited at the pivot point (a) 
vertically, (b) elliptically, (c) along a tilted axis, (d) pendulum excited by the external torque 

p(t): m is the mass of the pendulum bob, l is the length of the pendulum arm. 
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In the dissipative case, e.g. when the energy dissipates due to the friction in the pivot, one has 
to excite the pendulum to preserve oscillatory or rotational motion. There are two possibilities 
of excitation: (i) by the motion of the pivot, i.e., the parametrical excitation as shown in 
Figure 2(a-c), (ii) by the torque applied directly to the mass m – Figure 2(d). The parametrical 
excitation can be implemented by the vertical (Figure 2(a)) [43,44], elliptical (Figure 2(b)) 
[32,73] or along a tilted line (Figure 2(c)) motion of the pivot [56]).  
Despite the fact that both oscillatory and rotational motions are robust only a few percent of 
the published papers on pendula dynamics refer to the rotational motion. Rotating solutions of 
a pendulum have been studied mainly in the case of pendulum parametric excitation. Koch 
and Leven [39] used Melnikov’s method to detect bifurcations where harmonic and 
subharmonic rotating solutions are born. The closed form expression for the lower boundary 
in frequency-amplitude excitation parameters space has been derived for the region of 
existence of the stable rotating solution. Capecchi and Bishop [12,13] studied rotating 
solutions analytically using harmonic balance method. Approximate analytical solutions have 
been compared with numerical results. They also constructed basins of attraction for different 
types of motion. Later Clifford and Bishop [15] and Garira and Bishop [29] investigated 
rotating solutions numerically and introduced the classification of such trajectories 
distinguishing purely rotating, oscillating rotating, straddling rotating and large amplitude 
rotating orbits. Szemplinska-Stupnicka et al. [71,72] conducted numerical studies of the 
parametrically excited pendulum, which have been illustrated using basins of attraction, 
bifurcation diagrams and attractor manifolds phase portraits. They have   identified global 
bifurcations responsible for the onset of complex transient and/or steady state dynamics and 
various other aspects including fractal basin boundaries and coexistence of rotating solutions 
with other (including nonrotating) attractors. Extensive numerical simulations have been 
performed by Xu et al. [78-81].  Various parameter space plots for different sets of initial 
conditions and damping which allow to follow the development of attractors in the excitation 
amplitude-frequency parameters space have been calculated. The problem of dynamical 
integrity of both rotating and oscillating competing trajectories has been studied by Lenci and 
Rega [43] using a systematic construction of basins of attractions for varying parameters. The 
cross-erosion and the effects of secondary attractors in reducing the attractors safety, and thus 
its practical reliability, has been pointed out. Some analytical and experimental studies of the 
rotating solutions were also conducted by Xu et al. in [80,81]. In 2008, Lenci et al. [44] 
considered period-1 rotations analytically and obtained the approximation for the lower 
stability boundary associated with these period-1 rotations in the forcing parameter planes. De 
Paula et al. [55] have applied chaos control methods to avoid bifurcations that destabilize the 
rotating motion keeping the desired rotation over the extended parameter range. Pendula 
excited by a combination of the vertical and horizontal forcing at the pivot have been 
considered in the literature but they are far less researched [26,30,31,32,45,48,73]. Ge and Lin 
[30] numerically studied the response of a pendulum, whose pivot has been vertically excited 
and has been free to move horizontally. Mann and Koplow [48] used a combination of 
experimental measurements and analytical predictions (based on the method of multiple 
scales) to understand the results of the pitchfork bifurcation. Thompson et al. [73] have 
investigated the dynamics of the elliptically excited pendulum numerically concentrating on 
the change of stability boundaries of rotational motion due to the introduction of horizontal 
component. A pendulum excited by the combination of vertical and horizontal forcing at the 
pivot point has been considered by Pavlovskaia et al. [56]. Analytical approximations of 
period-1 rotations and their stability boundary on the excitation parameters plane have been 
derived using asymptotic analysis for the pendulum excited elliptically and along a tilted axis. 
One should mention the studies which have been concentrated on the oscillations of the 
inverted pendulum excited along a tilted axis (see e.g. [70,82]). Lythoof [47] have explained 
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why when a simple harmonic pendulum is viewed binocularly with a neutral-tint filter in front 
of one eye, the pendulum, instead of swinging to and fro in a plane, appears to swing in an 
ellipse, first advancing towards and them receding from the observer. A simple mechanical 
system consisting of the rotating pendulum has been used in the experimental studies of 
Lorenz chaos [14]. A model which comprises a rotating pendulum linked by an oblique spring 
pinned to its rigid support is investigated in [65]. This model provides a cylindrical dynamical 
system with both smooth and discontinuous regimes depending on the value of a system 
parameter and also the dynamics transient relying on the coupling strength between the 
rotating pendulum and the linked spring. Finally, one should mention the studies in which the 
pendulum is excited parametrically  by the random signal [8,83,84]. To summarize these 
studies it should be pointed out that the rotational solutions exist over limited parameters 
range and there are numerous bifurcations of the system that destabilize a rotational motion. 

The study of synchronization of oscillating pendula can be traced back to the works of 
the Dutch researcher Christian Huygens in XVIIth century [33,34]. He showed that a couple 
of mechanical clocks hanging from a common support were synchronized. Huygens had 
found that the pendulum clocks swung in exactly the same frequency and π out-of-phase, i.e., 
in antiphase synchronization. After the external perturbation, the antiphase state was restored 
within half an hour and remained indefinitely. Recently, several research groups revisited the 
Huygens’ experiment [7,17-19,22-24,36-38,59,66,74,76,77]. Pogromsky et al. [61] designed a 
controller for synchronization problem for two pendula suspended on an elastically supported 
rigid beam. To explain Huygens’ observations, Bennett et al. [4] built an experimental device 
consisting of two interacting pendulum clocks hanged on a heavy support which was mounted 
on a low-friction wheeled cart. The device moves by the action of the reaction forces 
generated by the swing of two pendula and the interaction of the clocks occurs due to the 
motion of the clocks base. It has been shown that to repeat the results of Huygens, high 
precision (the precision that Huygens certainly could not achieve) is necessary. Another 
device mimicking Huygens’ clock experiment, the so-called ‘coupled pendula of the 
Kumamoto University’ [41], consists of two pendula whose suspension rods are connected by 
a weak spring, and one of the pendula is excited by an external rotor. The numerical results of 
Fradkov and Andrievsky [28] show simultaneous approximate in-phase and antiphase 
synchronization. Both types of synchronization can be obtained for different initial conditions. 
Additionally, it has been shown that for the small difference in the pendula frequencies they 
may not synchronize. A very simple demonstration device was built by Pantaleone [54]. It 
consists of two metronomes located on a freely moving light wooden base. The base lies on 
two empty soda cans which smoothly rolls on the table. Both in-phase and antiphase 
synchronizations of the metronomes have been observed. Synchronous configurations of a 
pair of double pendula has been identified in [40]. Finally, one should mentioned the first 
experimental observation of chimera states in mechanical system of a number of coupled 
metronomes [49]. 

Mechanical systems that contain rotating parts (for example vibro-exciters, unbalance 
rotors) are typical in engineering applications and for years have been the subject of intensive 
studies [16,42,75]. One problem of scientific interest, which among others occurs in such 
systems, is the phenomenon of synchronization of different rotating parts [2,5,51] and 
references within]. Despite different initial conditions, after a sufficiently long transient, the 
rotating parts move in the same way - complete synchronization or a permanent constant shift 
is established between their displacements, i.e., the angles of rotation - phase synchronization 
[2,5,21,22,51]. Synchronization occurs due to dependence of the periods of rotating elements 
motion and the displacement of the base on which these elements are mounted [27]. Prasad 
[62] considers the system of coupled counter-rotating oscillators and observes mixed 
synchronizations, i.e., some systems’ variables are synchronized in-phase, while others are 
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out-of-phase. The dynamics of the system consisting of n rotating (in the same direction) 
pendula mounted on the movable beam have been considered in [5,20]. The pendula have 
been excited by the external torques which are linearly dependent on the angular velocities of 
the pendulums. As the result of such excitation, each pendulum rotates around its axis of 
rotation. It has been shown that both complete and phase synchronizations of the rotating 
pendula are possible. The approximate analytical conditions for both types of 
synchronizations and equations which allow the estimation of the phase differences between 
the pendula have been derived. Contrary to the case of the oscillatory pendula[17-
19,22,23,37,38], phase synchronization is not limited to three and five clusters’ 
configurations. The case of slowly rotating pendula and the influence of the gravity on their 
motion have been considered. The obtained results have been compared to those of Blekhman 
[5]. The dynamics of the similar system in which one pendulum rotates counter-clockwise, 
i.e., has a positive angular velocity, while the remaining pendula rotate clockwise with 
negative angular velocity has been studied in [21]. Two cases have been considered: (i) 
pendula rotate in the horizontal plane, i.e., the gravity has no influence on their motion, (ii) 
pendula rotate in the vertical plane and their weight causes the unevenness of their rotation, 
i.e., each pendulum slows down when the center of its mass goes up and accelerates when the 
center of its mass goes down. It has been shown that in such systems, despite opposite 
directions of rotation different types of synchronization occur. The dynamics of the pendula 
suspended on the nonlinear oscillators has been studied in [9,10,35]. The regions of stable 
synchronous rotational motion have been identified. In [69] the dynamics of the set of two 
pairs of double pendula mounted on the platform which oscillates vertically has been studied. 
Using a custom designed experimental rig different types of synchronous motion of rotating 
pendula have been identified. The extreme sensibility of the synchronized state on the system 
parameters and initial conditions has been pointed out.  

In this review we consider the dynamics of the system consisting of n pendula 
mounted on the movable beam. The pendula are excited by the external torques which are 
linearly dependent on the angular velocities of the pendula. As the result of such excitation 
each pendulum rotates around its axis of rotation. We consider two cases: (i) all pendula 
rotate in the same direction, (ii) one pendulum rotates in the opposite direction to the other 
pendula. It has been shown that both complete and various types of  phase synchronizations of 
the rotating pendula are possible. The synchronization mechanism base on the energy transfer 
between pendula via the oscillating beam has been identified. We derive the approximate 
analytical conditions for each type of synchronizations and equations which allow the 
estimation of the phase differences between the pendula. We consider the case of slowly 
rotating pendula and consider the influence of the gravity on their motion. Our results have 
been compared to those of [5]. Differences of both analyses have been pointed out and 
explained. The case when the excitation of one pendulum is weakening or even stops 
operating is also considered. We give evidence that the initial synchronization and the energy 
transfer between pendula can extend the rotational motion of this pendulum. We give 
evidence that our results are robust as they exist in the wide range of system parameters. 

This review paper is organized as follows. Section 2  explains how the synchronization 
can be achieved in the system of the coupled pendula. We consider two cases: (i) externally 
excited pendula are mounted to the movable beam, (ii) unexcited pendula are mounted on 
oscillating platform. Both cases are illustrated by the examples of experimentally observed 
synchronous states. In Sec. 3 we describe the considered model and identify the 
synchronization mechanism. The approximate analytical conditions for each type of 
synchronizations are derived. The main Section 4 gives several numerical examples of the 
synchronous behavior. The cases of both identical and nonidentical pendula as well as of 
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identically and differently excited pendula are considered.  Sec. 5 describes the behavior of 
the system when the excitation of one of the pendula weakens or vanishes. Finally, we 
summarize our results in Sec. 6. 

 
2. Synchronous states of rotating pendula  
Let us consider the systems shown in Figure 3(a-c). Each system consists of a rigid beam of 
mass mB on which n rotating pendula are mounted. In Figure 3(a,b) the beam is connected to a 
stationary base by the spring (or springs) with stiffness coefficient kx and a damper (or 
dampers) with a damping coefficient cx. Due to the existence of the forces of inertia, which 
act on each pendulum pivot, the beam can move in  horizontal (Figure 3(a)) or vertical (Figure 
3(b)) directions (this motion is described by coordinate x). The masses of the pendula are 
indicated as mi; li are the lengths of the pendula. The rotation of the i-th pendula is described 
by ϕi. The rotations of the pendula are damped by linear dampers (not shown in Figure 3) 
with damping coefficient cϕi. Each pendulum is driven by the drive torque inversely 
proportional to its velocity: iii pp 10 ϕ&− . If any other external forces do not act on the 
pendulum, then under the action of such a moment it rotates with constant angular velocity. 
As the system is in a gravitational field (g=9.81 - acceleration of gravity), the weight of the 
pendulum causes the unevenness of its rotation: the pendulum slows down, when the center of 
mass rises up and accelerates when the center of mass falls down. The effect of gravity is 
important in the case of slow rotations of the pendula. For high rotational speed it can be 
neglected as in the studies of rotor dynamics [16,42,75 and references within]. It is assumed 
that p1i>0.0. If p0i torque is positive, the pendulum rotates to the left having a positive value of 
the instantaneous angular velocity, if p0i<0.0, the pendulum rotates to the right with a negative 
angular velocity. In the system shown in Figure 3(c) pendula are forced to rotate (and 
oscillate) by the parametrical excitation, i.e., the periodic motion of the base to which they are 
mounted. 

To explain how the synchronization can be achieved in the systems of Figure 3(a,b) 
first consider the case of identical pendula and nonmovable beam. In this case all pendula 
have the same period of rotations (the pendula have the same masses and lengths). The 
rotations of the pendula are initiated by non-zero initial conditions and the pendula’s 
evolutions tend to the limit cycles. The pendula are not coupled and the phase angles between 
their displacements have fixed values, depending on initial conditions. Any perturbation of 
the pendula results in the changes of these angles. 

  
(a) 
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(b) 

 
Figure 3. (a,b) externally forced pendula mounted to the beam which can move; (a) 

horizontally (b) vertically, parametrically excited pendula mounted to the beam which 
oscillates periodically. 

When the beam can move (horizontally or vertically), the oscillations of the beam 
excited by the forces with which pendula act on it, cause the changes of the phase shifts 
between the pendula’s displacements and differentiate the angular velocity of their rotations. 
When after the transient time, all pendula have the same angular velocity of rotation and there 
are constant phase shifts between the pendula’s displacements, we can say that the pendula 
achieve synchronization [6,57,60,63,64]. The state of synchronization is achieved when the 
motion of the system is periodic and there are constant phase shifts between the pendula 
displacements [5,20,21]. The values of the phase shifts characterize the synchronous 
configuration and are independent of the initial conditions (unless the initial conditions belong 
to the basin of attraction of the particular configuration). 

For systems like Figure 3(a,b) the synchronization of the rotating pendula has been 
observed experimentally in [85]. A simple rig consisting of three direct-current electrical 
motors mounted on the wooden plate which can oscillate vertically (shown in Figure 4) has 
been considered.  The pendula are mounted at the end of  the motor's rods. The control system 
(for details see [85] has been used to vary the pendula's angular velocity. The sponges are 
used as springs and vicious dampers. 
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Figure 4. The experimental rig: three direct-current electrical motors mounted on the 

wooden plate which can oscillate vertically. 
 

 
Figure 5. Experimentally observed synchronous configurations, (a) complete 

synchronization, (b) synchronization with the phase shifts between pendula equal to 2π/3. 
 
The examples of experimentally observed synchronous configurations are shown in Figure 
5(a,b). Figure  5(a) presents the complete synchronization of three pendula. The configuration 
in which the phase shifts between pendula's displacement are equal to 2π/3 is illustrated in 
Figure 5(b). 

In the case of Figure 3(c) we cannot speak about the synchronization between the 
pendula but the pendula can synchronize with the periodic parametrical forcing (phase 
locking) [52]. This can lead to the occurrence of the various synchronous states of rotating 
pendula [69]. 

 
Figure 6. Experimental implementation of the parametrically excited pendula of Figure 3(c). 

 
In [69] the system like one in Figure 3(c), i.e., the system of four pendula arranged into a 
cross structure as shown in Figures 6 has been considered. The base, mounted on the shaker, 
is excited in the vertical direction by a parametric excitation ݏܿܣሺ߱ݐሻ. In the experiment, the 
rig has been mounted on the shaker LDS V780 Low Force Shaker. The shaker introduces 
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practically kinematic periodic excitation ܣ cos߱ݐ, where A and ω are the amplitude and the 
frequency of the excitation, respectively. At initial moments the pendula have been assumed 
to be in the upper position, i.e., ߮ଵିସ ൌ ߨ േ  We fix the value of the excitation .36/ߨ
amplitude A=0.01±0.005 [m] and consider excitation frequency ω as a control parameter.  

Rotating pendula can be 1:1 and 1:2 synchronized with the oscillations of the platform. 
In the considered system one can observe the synchronous states of both clockwise and 
counter-clockwise rotating pendula. In the experiment using a simple mechanical rig, the 
existence of different types of synchronous configurations of rotating nonidentical pendula, 
has been confirmed.  Typical examples of different types of synchronous states are shown in 
Figures 7(a-d), where yellow arrows indicate the direction of rotation. For a qualitative 
classification of the pendula behavior, we use the following nomenclature; the pendula which 
rotate clockwise or counter-clockwise are marked by + and -, respectively, the pendula which 
are at rest are marked by 0. The angular velocity of the pendulum is given as follows: 
߮ ൌ ݐ߱  ܾ sinሺ߱ݐሻ, where i=1,…,4, for the case of clockwise rotation and ߮ ൌ െ߱ݐ 
ܾ  sinሺെ߱ݐሻ, where the harmonic component describes the influence of the gravity on the 
motion of pendula (b is constant for all pendula as their masses are the same) [20,21]. Figure 
7(a) presents the case when all pendula rotate in the same direction, i.e., (+,+,+,+). The 
pendula’s displacements fulfill the relation ߮ െ ߮ ൌ 0, where i,j=1,2,3,4, i≠j. In Figure 7(b) 
one observes the synchronous motion when 3 pendula (1, 2, and 3) rotate in the same 
direction, while the fourth in the opposite one (+,+,+,-). In this case, ߮ଵିଷ  ߮ସ ൌ 0 and 
pendulum 4 is in the state of mirror synchronization [21] with the cluster of synchronized 
pendula 1, 2 and 3. In Figure 7(c), we present the variation of the case (+,+,+,-) when three 
pendula rotate in the same rotation velocity while the fourth one rotates twice slower. Pendula 
1, 2, and 3 are synchronized. The case when two pendula rotate clockwise and two 
counterclockwise is presented in Figure 7(d). The pairs of the pendula which rotate in the 
same directions are synchronized and are in the state of cluster antiphase synchronization 
[21], i.e., ߮ଵ,ଶ  ߮ଷ,ସ ൌ ߨ  ܾ sinሺ߱ݐሻ. 

All the observed synchronous states are stable but their basin of attraction are very 
small and the small perturbations (smaller than the accuracy of the shaker) can lead the 
system to the other configuration. The likelihood that the system will remain in a given 
configuration is very small and in the experiments practically equal to zero. In such systems 
one has to use the concept of basin stability [87]. This has been confirmed in the numerical 
simulations summarized in Figure 8 (for details see [67]). 

 
  



12 
 

 

 

 

 
Figure 7. Different types of experimentally observed synchronous states; (a) pendula rotate 
clockwise (+,+,+,+), ω=20.00 [rad/s], (b) 3 pendula rotate clockwise while the fourth one 

counterclockwise (+,+,+,-), ω=24.00 [rad/s], (c) 3 pendula rotate clockwise (ω=29.00 [rad/s]) 
while the fourth one counterclockwise (+,+,+,-) with twice slower angular velocity, (d) 2 

pendula rotate clockwise and 2 counterclockwise (+,+,-,-), ω=35.00 [rad/s]. 
 

The extreme sensitivity of the synchronized state on the system parameters and the initial 
conditions which introduces pseudo-randomness to the predictability of the synchronous state 
has been observed. The basins of attraction of different synchronous states are presented in 
Figure 8. It can be seen that the type of pendula synchronization very strongly depends on the 
excitation parameters. Generally, synchronous rotation of pendula is robust as it exists for the 
wide range of excitation parameters, but particular synchronous states are very sensitive to the 
changes of system parameters as shown in Figure 8.  
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Figure 8. Basins of attraction of the combined synchronous states of  

4 parametrically excited pendula. 
 
In practical application of the systems based on the parametrically excited pendula one has to 
apply a feedback control mechanism. This mechanism should be capable to keep the pendula 
rotating permanently in the desired synchronous configuration. 
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3. Synchronization mechanism 
3.1. Equations of motion 
Let consider the system shown in Figure 3(a). The equations of motion described above are as 
follows: 

  ,sincos 10
2
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where i=1,2,…n. In our numerical simulations eqs.(1,2) have been integrated by the 4th order 
Runge-Kutta method. The obtained results confirmed the existence of the phenomenon of 
phase synchronization in the considered system and allowed the determination of phase 
angles between the synchronized pendula. Additionally the numerical integration of eqs.(1,2) 
allows the determination of the basins of attraction of different coexisting configurations of 
the synchronized pendula. 

 

3.2. Synchronization conditions 

3.2.1. Energy balance of pendula 

Multiplying eq. (1) by the angular velocity of the pendula ሶ߮   we obtain the equation of the 
energy balance: 

  ,cossin 2
10

22
iiiiiiiiiiiiiiiiii ppxlmcglmlm ϕϕϕϕϕϕϕϕϕ ϕ &&&&&&&&&& −+−−=+    (3) 

where i=1,…,n. Assume that the motion of both pendula is periodic with period T and 
integrating eq.(3) over the period T we obtain the equation of the energy balance: 
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     (4) 

Left hand side of eq.(4) represents the increase of the total energy of the i-th pendulum. For 
the periodic oscillations of the pendula (and the beam) the angular velocities of the rotating 
pendula fluctuate around the constant mean value so this increase has to be equal zero 

.0sin
00

2 =+ ∫∫
T

iiii

T

iiii dtglmdtlm ϕϕϕϕ &&&&        (5) 

The first component of the right hand side of eq. (4) gives the energy dissipated by the 
viscous dampers cφi : 

.
0

2∫=
T

ii
DAMP

i dtcW ϕϕ &           (6) 

The next component of the right hand side of eq. (4) describes the energy transferred by the i-
th pendulum to the beam (when it is positive) or the energy transferred from the beam to the i-
th pendulum: 

.cos
0
∫=
T

iiii
SYN

i dtxlmW ϕϕ &&&          (7) 

The last component of the right hand side of eq.(4) gives the energy supplied to the i-th 
pendulum by the driving torque: 
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.)(
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10∫ −=

T

iiii
DRIVE

i dtppW ϕϕ &&          (8) 

Substituting eqs. (5-8) into eq. (4) i.e.,  
.SYN

i
DAMP

i
DRIVE

i WWW +=          (9) 

one obtains pendula’ energy balances. 

 
3.2.2. Energy balance of the beam 
Multiplying eq.(2) by beam’s velocity ݔሶ  one gets: 
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and assuming that beam’s oscillations are periodic and integrating eq.(10) over period T we 
obtain the energy balance of the beam: 
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Left hand side of eq.(11) represents the increase of the total energy of the beam. As the 
oscillations are periodic this increase should be equal zero: 
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First component on the left hand side of eq.(11) describes the energy dissipated by the viscous 
damper cx during one period of oscillations: 

.
0

2∫=
T

xbeam dtxcW &           (13) 

The next component gives the energy which is supplied to the beam by the pendula (the sum 
of the works performed during the period T by the forces with which pendula act on the 
beam): 
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Substituting eqs.(12-14) into eq. (11) we get the energy balance of the beam in the following 
form: 

( ).
1
∑
=

=

=
ni

i

SYN
ibeam WW           (15) 

Substituting eq.(9) into eq. (15), i.e., 
.1121 beam

DAMPDAMPDRIVEDRIVE WWWWW ++=+        (16) 
we get the energy balance of system (1,2). 
 
3.2.3. Synchronization conditions - linearized model 
In this section we derive the approximate analytical conditions for synchronization of rotating 
pendula. Following the idea of Blekhman [5] to explain the phenomena of synchronization we 
determine and analyze the work done by the momentum with which the i-th pendulum acts on  
beam - Wi

SYN. 

Let us assume that the damping in the system is small, i.e., 
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.0.0
,0.0

≈

≈
DAMP

i

beam

W
W            (17) 

When the oscillations are periodic and there is no energy dissipation there is no need for the 
energy supply, so 

.0=DRIVE
iW            (18) 

From eqs. (9)  we have 
.0=SYN

iW            (19) 

 
(i) Pendula rotating in the same directions 
As in [5], we assume that the pendula's angular velocities are constant, i.e., the fluctuations of 
the pendula's angular velocities caused by the motion in the gravitational field are so small 
that can be neglected. Hence, the pendula's accelerations are equal to zero and in the case, 
when the pendula rotate in the same direction, one gets linear functions describing the 
pendula's angles of rotation:  
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Right hand side of eq.(2) describes the force with which n pendula are acting on beam: 
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Substituting eq. (20) into  eq.(21) one gets:  
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Substituting eq. (22) into eq. (2) and denoting 
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one gets: 
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Assuming that the damping coefficient cx is small the oscillations of the beam can be 
described in the following way: 
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In the equation of motion of each pendula (1) we have the component which has been 
identified as a synchronization momentum. Substituting eqs. (20,24) into eq. (7) and denoting 

Uk
A

x
2

4

ω
ω
−
−

=  

one gets: 
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After some calculations one gets 
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Eq. (26) allows the calculation of the phase angles βk for which the synchronization takes 
place and the pendula rotate periodically. Eq. (26) is fulfilled for 

nβββ === ...21           (27) 
and the pendula reach complete synchronization or when 

,0sin   ,0cos
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== ∑∑
==

i

n

i
ii

n

i
iii lmlm ββ         (28) 

and we observe phase synchronization. Note that the synchronization conditions given by eqs. 
(27-28) are identical to those obtained by Blekhman using small parameter methods [5]. 

In the case of identical pendula condition (28) is simplified to the following form  

.0sin...sinsin
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       (29) 

It can be shown that eqs. (29) are fulfilled for the following phase angles 

....1,)1(2 ni
n
i

i =
−

=
πβ          (30) 

For n=2 (two pendula) eq.(30) gives β1=0 , β2=0 and β1=0, β2=π. 
For n=3 (three pendula) eq.(30) gives β1=0 , β2=0  (as observed in Figure 5(a)) and β1=0, 
β2=2π/3 and β3=4π/3 (Figure 5(b). 

In the considered case the synchronization state of the pendula’ motion is the periodic 
motion of the system (1,2) in which phase angles βi fluctuate around constant mean values 
(characteristic for a given configuration). The mean values of βi are independent of initial 
conditions (in the basin of attraction of the particular configurations) and not sensitive to the 
external perturbations. In this state, when the pendula are identical there is no energy transfer 
between the pendula via the beam.  
 
(ii)  Pendula rotating in different directions 
In the case when m of the total n pendula rotates in the opposite direction to the rest (i.e., n-m) 
of the pendula the phase differences between pendula in the synchronous configurations have 
to be calculated from different equations. Let assume the pendulum 1 rotates clockwise and 
the other pendula counterclockwise. In this case the linearized equations describing pendula's 
displacements and angular velocities are as follows: 
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Repeating the calculations presented in Sec. 3.3.2.1. one gets the following equations 
(equivalent to eqs. (26)): 
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Eqs.(32) allow the calculation of the value of phase angles βi  at which the motion of 
pendulums synchronization occurs, and thus the motion of the system is periodic. 

In the case of n=2 identical pendula, and assuming that β1=0, eqs.(32) get the form of 
two identical equations: 

0)sin(
0)sin(

2

2

=
=

β
β            (33) 

which are fulfilled in two cases: (i) β2=0 -  the mirror-synchronization (M),  (ii) β2=π - the 
antiphase synchronization (A) as given in Table 1. 

.  
type of synchronization phase difference 

between pendula 
pendula's 

configuration 
mirror-synchronization (M) β1=0, β2=0  

 
antiphase synchronization (A) β1=0, β2=π  

 
 

Table 1. Types of synchronization observed for n=2 pendula rotating in opposite directions. 
 
 

type of synchronization phase difference 
between pendula 

pendula's 
configuration 

tree-synchronization (T) β1=0, β2=-π/3, 
β3=-5π/3 

 

 
 

cluster-antiphase 
synchronization (CA) 

β1=0, β2=β3= π 

 

Table 2. Types of synchronization observed for n=3 pendula (pendulum 1 rotates in opposite 
direction to pendula 2 and 3). 

For three identical pendula, assuming that β1=0, eqs.(32) get the following form: 
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which are fulfilled for: 
(i)  β2=-π/3 and  β3=-5π/3  - the  tree-synchronization (T), (ii) β2=β3= π– the cluster-antiphase 
synchronization (CA) as given in Table 2. 
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4. Numerical examples 

4.1.  Two pendula rotating in the same direction 

In this example we consider the system (1-2) with the following parameter values: 
m1=m2=1.00, l1=l2=0.25, cϕ1=cϕ2=0.01, p01=p02=5.00, p11=p12=0.50, mB =6.00. One can 
calculate that ሶ߮ ே ൌ 10.0 and U=8.0. We consider different values of stiffness coefficient kx of 
the spring connecting the beam mB with a fixed foundation so the beam can oscillate above or 
below the resonance, i.e., the frequency  

U
kx

x =α            (35) 

is smaller or larger than the pendulum's 1 angular velocity ሶ߮ ே. The damping coefficient cx has 
been selected in such a way as to be equivalent to the arbitrarily selected logarithmic 
decrement of damping Δ=ln(1.5). As such a damping does not significantly change the period 
of the beam's free oscillations cx can be calculated from the formula 

.
π

Uk
c x

x

Δ
=            (36) 

Typical time series of pendula’ velocities and displacements are shown in Figure 9(a,b). The 
unit of time on the horizontal axis is the number ܰ ൌ ሶ߮ ேߨ2/ݐ, i.e., the number of complete 
revolutions of the pendulum rotating with constant angular velocity ሶ߮ ே. Figure 9(a) shows the 
angular velocities of pendula 1ϕ& and 2ϕ&  for a system with low stiffness coefficient kx=100.0, 
so ߙ௫ ൌ ඥ10.0/8.0 ൌ 3.53 ൏ 10.0 ൌ ሶ߮ ே. The following initial conditions have been 
considered: ϕ10=0, ϕ20=π/4, 0.02010 ==ϕϕ && . As one can see, after the transient the phase 
difference between the pendula’ velocities tends to π. Figure 9(b) shows the angular 
displacement of pendulum 2, 12 ϕϕ − , related to the displacement of the first pendulum. One 
can notice that after the decay of the transient, this angle oscillates around a constant average 
value π and the system reaches the state of antiphase synchronization. This state for small 
values of kx is reachable for any initial conditions. Shown in both figures the fluctuations of 
angular velocities and displacements, are caused by the weight of pendula, i.e., pendulum. 
speeds during the motion down and slows when its mass rise up. 
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Figure 9. Time series of pendula’ velocities and displacements calculated from eqs (1,2): 

m1=m2=1.00, l1=l2=0.25, cϕ1= cϕ2=0.01, p01=p02=5.00, p11=p12=0.50, mB =6.00, ሶ߮  ൌ 10.0 and 
U=8.0 (the unit of time on the horizontal axis is the number ܰ ൌ ሶ߮ ேߨ2/ݐ, i.e., the number of 
complete revolutions of the pendulum rotating with constant angular velocity ሶ߮ ே); (a) angular 

velocities 1ϕ& and 2ϕ&  for a system (1,2) with low stiffness coefficient kx=100.0, ϕ10=0, 
ϕ20=π/4, 02010 ==ϕϕ && ; (b) angular displacement of pendulum 2: 12 ϕϕ −  related to the 

displacement of the first pendulum. 

 

The pendula’ configurations characteristic for the system (1-2) with n=2 pendula and 
its basins of attraction are shown in Figure 10(a-d). Figure 10(a) presents the configuration of 
antiphase synchronization with β1=0 and β2=π. Notice that the same values of β1 and β2 can 
be calculated analytically from eq.(30) and condition (29) is fulfilled. The configuration 
complete synchronization is presented in Figure 10(b). This configuration is observed for 
larger values of coefficient kx when condition (27) is fulfilled. Figure 10(c) shows the basins 
of attraction of the complete (white color) and anti-phase (gray color) synchronization states 
in the system with a stiffness coefficient of kx=3600.0. The basins are shown in the ϕ10-ϕ20 

plane with fixed initial velocities 02010 ==ϕϕ && . These basins for systems with different values 
of the stiffness coefficient kx, shown on the plane kx-ϕ20 (ϕ10=0, 02010 ==ϕϕ && ) are presented 
in Figure 10(d). The results of Figure 10(d) and predictions of [5] are significantly different. 
Blekhman [5] predicts the existence of complete (for ݇௫ఝሶ ே ൌ ܷ ሶ߮ ேଶ ൏ 800.0) and antiphase 
(for ݇௫ఝሶ ே ൌ ܷ ሶ߮ ேଶ  800.0) independently of initial conditions. Meanwhile, Figure 10(d) 
shows, that the boundary between the basins of attraction of complete and antiphase 
synchronizations is located significantly below the value of ݇௫ఝሶ ே  and is not horizontal. For 
kx<kx1≈400.0, independently of initial conditions one observes the antiphase synchronization 
while for kx1<kx<kx2≈600.0 there exists the coexistence of complete and antiphase 
synchronizations. In the interval kx2<kx<kx3≈1840.0 independently of initial conditions the 
system (1,2) reaches the state of complete synchronization and for larger values of kx>kx3 we 
have the coexistence of both synchronization states again.  
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Figure 10. The pendula’ configurations characteristic for the system (1,2) with n=2 pendula 

and its basins of attraction; (a) configuration of antiphase synchronization with β1=0 and 
β2=π, (b) complete synchronization, (c) basins of attraction of the complete (white color) and 

anti-phase (gray color) synchronization states, kx=3600.0 (the basins are shown in the 
߮ଵ െ ߮ଶ  plane with fixed initial velocities ሶ߮ ଵ ൌ ሶ߮ ଶ ൌ 0, (d) basins attraction for 

different values of the stiffness coefficient kx, shown on the plane ݇௫ െ ߮ଶ,  
(߮ଵ ൌ ሶ߮ଵ ൌ ሶ߮ ଶ ൌ 0) 

  
 

4.2. Three pendula rotating in the same direction 
Let us consider the system (1-2) with the following parameter values: m1=m2= m3=1.00, 
l1=l2=l3=0.25, cϕ1=cϕ2=cϕ3=0.01, p01=p02= p03=5.00, p11=p12= p13=0.50, mB =6.00. One can 
calculate that ሶ߮ ே ൌ 10.0 and U=9.0 (due to n=3). The values of stiffness and damping 
coefficients kx and cx have been taken as in previous section. 

Typical time series of pendula’ velocities and displacements in the case of phase 
synchronization are shown in Figure 11(a,b). Figure 11(a) shows the angular velocities of 
pendula ሶ߮ ଵ, ሶ߮ ଶ and ሶ߮ ଷ for a system with low stiffness coefficient kx=100.0 and ߙ௫ ൌ
ඥ10.0/9.0 ൌ 3.33 ൏ 10.0 ൌ ሶ߮ ே. The following initial conditions have been considered: 

߮ଵ ൌ 0, ߮ଶ ൌ
గ
ସ
, ߮ଷ ൌ

గ
ଶ
, ሶ߮ ଵ ൌ ሶ߮ ଶ ൌ ሶ߮ ଷ ൌ 0. As in the previous plots (Figure 9(a,b)) 

the unit of time on the horizontal axis is the number ܰ ൌ ሶ߮ேߨ2/ݐ, i.e., the number of 
complete revolutions of the pendulum rotating with constant angular velocity ሶ߮ ே. As one can 
see, after the decay of transients the phase difference between the pendula velocities tends to 
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the constant value of 2π/3. Figure 11(b) shows the angular displacement of pendula, ߮ଶ െ ߮ଵ 
and ߮ଷ െ ߮ଵ, related to the displacement of the first pendulum. One can notice that these 
angles in what follows referred as the relative displacements oscillate around a constant 
average values 2π/3 and 4π/3. Such a state of phase synchronization is obtained for kx=100.0 
and arbitrary initial conditions. Shown in both figures the angular velocity fluctuations and 
movements in relative terms, are caused by the motion in gravitational field. Numerically 
estimated phase shifts β2=2π/3 and β3=4π/3 are in good agreement with the values calculated 
analytically from eqs.(30). 
 
 
 

 
Figure 11. Time series of pendula’ velocities and displacements in the case of phase 

synchronization,. (a) angular velocities of pendula ሶ߮ ଵ, ሶ߮ ଶ and ሶ߮ ଷ for a system (1,2) with low 
stiffness coefficient kx=100.0 and   ߙ௫ ൌ 3.33, ߮ଵ ൌ 0, ߮ଶ ൌ

గ
ସ
, ߮ଷ ൌ

గ
ଶ
, ሶ߮ ଵ ൌ ሶ߮ ଶ ൌ

ሶ߮ ଷ ൌ 0 (the unit of time on the horizontal axis is the number ܰ ൌ ሶ߮ேߨ2/ݐ, i.e., the number 
of complete revolutions of the pendulum rotating with constant angular velocity ሶ߮ ே), 

(b) angular displacement of pendula ߮ଶ െ ߮ଵ and ߮ଷ െ ߮ଵ related to the displacement of the 
first pendulum, β2=2π/3, β3=4π/3. 

 
 

In another example, it is assumed that kx=3600.0, so  ߙ௫ ൌ ඥ3600.0/9.0 ൌ 20.0 
10.0 ൌ ሶ߮ ே and the system of the beam and three pendula eqs. (1,2) is below the resonance. 
We consider the following initial conditions:  ߮ଵ ൌ 0, ߮ଶ ൌ

గ
ସ
, ߮ଷ ൌ

గ
ଶ 

, Figure 12(a,b) 

shows that after a transitional period the angular velocities of all three pendula are the same 
and the relative displacements  ߮ଶ െ ߮ଵ and ߮ଷ െ ߮ଵ tend to zero, so one observes the state 
of complete synchronization. Due to the existence of gravitational field we observe the 
fluctuations of the pendula’ motion caused by their weights. 
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Figure 12. Time series of pendula’ velocities and displacements in the case of the complete 
synchronization,. (a) angular velocities of pendula ሶ߮ ଵ, ሶ߮ ଶ and ሶ߮ ଷ for a system (1,2) with low 

stiffness coefficient kx=3600.0 and  ߙ௫ ൌ 20.0, ߮ଵ ൌ 0, ߮ଶ ൌ
గ
ସ
, ߮ଷ ൌ

గ
ଶ
, ሶ߮ ଵ ൌ ሶ߮ ଶ ൌ

ሶ߮ ଷ ൌ 0 (the unit of time on the horizontal axis is the number  ܰ ൌ ሶ߮ ேߨ2/ݐ , i.e., the number 
of complete revolutions of the pendulum rotating with constant angular velocity ሶ߮ ே), 

(b) angular displacement of pendula ߮ଶ െ ߮ଵ and ߮ଷ ൌ ߮ଵrelated to the displacement 
of the first pendulum, β2=β3=0. 

 
In the system (1,2) with a stiffness coefficient of kx=3600.0 and different initial 

conditions (for example ߮ଵ ൌ 0, ߮ଶ ൌ
గ
ଶ
, ߮ଷ ൌ ,ߨ ሶ߮ ଵ ൌ ሶ߮ ଶ ൌ ሶ߮ ଷ ൌ 0 one observes a 

different type of synchronization as shown in Figure 13(a,b). After a transitional period 
angular velocities 1ϕ& and 3ϕ&  tend to each other and are different than 2ϕ& ; relative 
displacement 13 ϕϕ −  reaches a constant value 2π, so 13 ϕϕ = , and 12 ϕϕ − =π. Two pendula 1 
and 3 create a cluster which is in anti-phase with pendulum 2.  

 
Figure 13. Time series of pendula’ velocities and displacements in the case of the antiphase 

synchronization of pendulum 2 with a cluster consisting of pendula 1 and 3; (a) angular 
velocities of pendula ሶ߮ ଵ, ሶ߮ ଶ and ሶ߮ ଷ for a system (1-2) with low stiffness coefficient 

kx=3600.0 and  ߙ௫ ൌ 20.0, ߮ଵ ൌ 0, ߮ଶ ൌ
గ
ଶ
, ߮ଷ ൌ ,ߨ ሶ߮ ଵ ൌ ሶ߮ ଶ ൌ ሶ߮ ଷ ൌ 0 (the unit of 

time on the horizontal axis is the number ܰ ൌ ሶ߮ேߨ2/ݐ , i.e., the number of complete 
revolutions of the pendulum rotating with constant angular velocity ሶ߮ ே), 

(b) angular displacement of pendula ߮ଶ െ ߮ଵ and ߮ଷ െ ߮ଵ related to the displacement of the 
first pendulum, β2=π, β3=2π.. 
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Figure 14. Synchronization configurations in the system (1,2) with n=3 pendula; (a) phase 

synchronization with phase shifts between pendula: β1=0,  β2=2π/3 and β3=4π/3, (b) complete 
synchronization (β1=β2=β3=0), (c) antiphase synchronization of a single pendulum with the 

cluster of two other pendula, β1=0, β2=π and  β3=0. 
 

Figure 15. Basins of attraction of the different states of pendula’ synchronization, (a) basins of 
attraction of complete (white color) and anti-phase (gray color with different shades for 

different pairs of pendula in the cluster) synchronization states for a system (1,2), kx=3600.0 
(the basins are shown in the ߮ଶ െ ߮ଷ plane,   ߮ଵ ൌ 0, ሶ߮ ଵ ൌ ሶ߮ ଶ ൌ ሶ߮ ଷ ൌ 0, (b) basins of 

attraction of complete (white color), anti-phase (gray color in different shades for different 
pairs of pendula in the cluster) and phase (dark gray color at the bottom) for different values 

of stiffness coefficient kx ,   ߮ଵ ൌ 0, ߮ଶ ൌ ,ߨ ሶ߮ ଵ ൌ ሶ߮ ଶ ൌ ሶ߮ ଷ ൌ 0. 
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Our numerical results show that in the system (1-2) with n=3 pendula three different 
configurations of synchronized pendula are possible, as shown in Figure 14(a-c). Figure 14(a) 
presents the phase synchronization with phase shifts between pendula: β1=0,  β2=2π/3 and 
β3=4π/3 (condition (21) is fulfilled) which exists for sufficiently small values of kx<370 
(regardless of initial conditions). Complete synchronization (β1=β2=β3 and condition (20) is 
fulfilled) which exists for the appropriate values of kx (370<kx<1880) regardless of initial 
conditions and which for sufficiently large values of kx (kx>1880) coexists with antiphase 
synchronization is described in Figure 14(b). In contrast to the previously studied systems 
with oscillating pendula [17-19] one can observe the phenomenon of antiphase 
synchronization of a single pendulum with the cluster of two other pendula. Figure 14(c) 
presents the anti-phase synchronization β1=0 (or β2=0 or β3=0) and two other phase shift 
angles equal to π (condition (21) is fulfilled). This configuration co-exists with a complete 
synchronization for sufficiently large values of kx (kx>1880). Depending on initial conditions 
the cluster is created of pendula 1-2, 1-3 or 2-3. 

The basins of attraction of different states of pendula’ synchronization are shown in 
Figure 15(a,b). Figure 15(a) shows the basins of attraction of complete (white color) and anti-
phase (gray color with different shades for different pairs of pendula in the cluster) 
synchronization states for a system with stiffness coefficient kx=3600.0. The basins are shown 
in the ߮ଶ െ ߮ଷ plane ( ߮ଵ ൌ 0, ሶ߮ ଵ ൌ ሶ߮ ଶ ൌ ሶ߮ ଷ ൌ 0). Figure 15(b) shows the basins of 
attraction of complete (white color), anti-phase (gray color in different shades for different 
pairs of pendula in the cluster) and phase (dark gray color at the bottom) for different values 
of stiffness coefficient kx. The following initial conditions have been considered:  ߮ଵ ൌ
0, ߮ଶ ൌ ,ߨ ሶ߮ ଵ ൌ ሶ߮ ଶ ൌ ሶ߮ ଷ ൌ 0. 

The results obtained by the numerical integration of equations of motion (1,2) are 
significantly different from the results obtained by the method of small parameter [5]. For 
example Blekhman [5] predicts the existence of complete and phase synchronization (the 
second one with the same phase shifts as in our studies, i.e., 2π/3 and  4π/3) . It has been 
stated that for the systems with stiffness coefficient ݇௫ఝ ሶ ே ൌ ܷ ሶ߮ ேଶ ൏ 900.0 independently of 
initial conditions the phase synchronization occurs while for larger values of  ݇௫ఝ ሶ ே the 
complete synchronization takes place. Contrary to this statement Figure 15(a,b) shows that the 
boundary between the basins of attraction phase and complete synchronization takes place at 
the level kx=370.0 (almost three times lower). 

Another significant difference between our results and these of [5] is the existence of 
anti-face synchronization of a single pendulum and a cluster consisting of two pendula ([5] 
does not prescribe such configuration). For kx>1880.0 this configuration co-exists with a 
complete synchronization of all pendula. Notice that the method of small parameter used in 
[5] does not allow the identification of the coexisting configurations. 
 
4.3. Large system of pendula rotating in the same direction 

We studied the systems with up to 100 rotating pendula. It has been found that for larger n 
same types of synchronization are observed. Their examples are shown in Figures 16-18. 
Figure 16(a,b) presents the phase synchronization of n=20 pendula in the system (1-2) with 

kx=1000.0, M=20.0, and the following initial conditions:
200
πϕ i

i = , 00 =iϕ& . Figure 16(a) 

shows that pendula’ velocities 201,...,ϕϕ &&  oscillate around the average value close to ሶ߮ ே. 
Angular displacements 1ϕϕ −i tend to the constant values which differ by π/10 as can be seen 
in Figure 16(b). The complete synchronization of 20 pendula is described in Figure 17(a,b). 
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We consider the system (1-2) with kx =20000.0, M=20.0 and initial conditions :
180
7

0
πϕ i

i = , 

0.00 =iϕ& . The velocities of all pendula 201,...,ϕϕ &&  oscillate around the constant average value 
ሶ߮ ே (Figure 17(a)) and angular displacements 1ϕϕ −i tend to zero, i.e., the displacements of all 

pendula are the same (Figure 17(b)). The example of the synchronization in clusters is 
presented in Figure 18(a,b). We consider the same system as in the previous example with the 

following initial conditions: 
200
πϕ i

i = , 0.00 =iϕ& . Figure 18(a) shows that pendula’ velocities 

201,...,ϕϕ &&  oscillate around the average value close to ሶ߮ ே. The angular displacements 1ϕϕ −i

tend to two constant values 0 or π as can be seen in Figure 18(b). Two clusters of 
synchronized pendula have been created (they consist of 7 and 13 pendula). The clusters are 
synchronized in antiphase. 

Contrary to the case of oscillating pendula [17,18] rotating pendula are not grouped in 
three or five clusters only. The lack of this restriction causes that in the system (1,2) 
depending on initial condition one can observe a great variety of different clusters’ 
configurations. The number of configurations grows with a number of pendula n.  

 
Figure 16. Phase synchronization of n=20 pendula in the system (1-2): m1=m2=…=m20= 1.00, 
l1=l2=…=l20=0.25, cϕ1=cϕ2=…=cϕ20=0.01, p01=p02=…=p020=5.00, p11=p12=…= p120=0.50, mb 

=20.00, kx=1000.0, 
200
πϕ i

i = , 0.00 =iϕ& ; (a) pendula’ velocities iϕ& , (b) angular displacements 

1ϕϕ −i . 
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Figure 17. Complete synchronization of 20 pendula in system (1-2): ): m1=m2=…=m20= 1.00, 
l1=l2=…=l20=0.25, cϕ1=cϕ2=…=cϕ20=0.01, p01=p02=…=p020=5.00, p11=p12=…= p120=0.50, mB 

=20.00, kx=20000.0, 
180
7

0
πϕ i

i = , 0.00 =iϕ& ; (a) pendula velocities iϕ& , (b) angular 

displacements 1ϕϕ −i . 

 
Figure 18. Cluster synchronization of 20 pendula in system (1-2): m1=m2=…=m20= 1.00, 

l1=l2=…=l20=0.25, cϕ1=cϕ2=…=cϕ20=0.01, p01=p02=…=p020=5.00, p11=p12=…= p120=0.50, mb 

=20.00, kx=20000.0, 
200
πϕ i

i = , 0.00 =iϕ& ; (a) pendula velocities iϕ& , (b) angular displacements 

1ϕϕ −i . Clusters of 7 and 13 pendula are synchronized in antiphase. 
 

 
4.4  Two pendula rotating in the opposite directions 
Now, let us consider the system (1-2) with the following parameter values: m1=m2=1.00, 
l1=l2=0.25, cϕ1=cϕ2=0.01, p01=5.00, p02= -5.00, p11=p12=0.2, mB =6.00. One can calculate that 
ሶ߮ ଵே ൌ 10.0, ሶ߮ ଶே ൌ െ10.0  and U=8.0. The values of stiffness and damping coefficients kx 

and cx have been taken as in previous section. 
Figure 19(a) presents time series of the pendula's angular velocities 1ϕ& and 2ϕ&  for the 

small value of the stiffness coefficient  kx=500.0, so ߙ௫ ൌ ඥ500.0/8.0 ൌ 7.91 ൏ 10.0 ൌ
ሶ߮ଵே . The pendula rotate in opposite directions with constant velocities 0.10110 == Nϕϕ && [s-1],

0.10220 −= Nϕϕ && [s-1] starting from the initial positions: ϕ10=0, ϕ20=π/4. One can see that after 
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the initial transient (several rotations) caused by the oscillations of the beam the pendula's 
velocities fluctuate (due to the gravity) around the initial values ሶ߮ ଵே and ሶ߮ ଶே. Figure 19(b) 
shows time series of the sum of pendula's displacements 12 ϕϕ + . One can see that this sum 
(after the initial transient) is constant and equal to zero so 12 ϕϕ −= . This type of 
synchronization is the mirror-synchronization (M) as the rotational motion of pendulum 2 is 
the mirror image of the rotations of pendulum 1 as can be seen at the diagram shown in Figure 
19(b). For the small value of the stiffness coefficient kx=500.0 and different initial conditions 
ϕ10=0, ϕ20=-43π/36 one can observe different type of synchronization as shown in Figure 
12(c,d). After the initial transient the pendula's velocities (as in the previous case) fluctuate 
around the initial values ሶ߮ ଵே and ሶ߮ ଶே (Figure 19(c)). The sum of pendula's displacements 

12 ϕϕ +  fluctuates around the constant averaged value πϕϕ −>=+< 12  as shown in Figure 
19(d). We call this type of synchronization the antiphase-synchronization (A). For the larger 
values of kx the next type of synchronization can be observed. Figure 20(a,b) illustrates 
pendula's synchronization for large values of the stiffness coefficient  kx=3000.0 and  ߙ௫ ൌ
ඥ3000.0/8.0 ൌ 19.36  10.0 ൌ ሶ߮ଵே. We consider the following initial conditions: ϕ10=0, 
ϕ20=-3π/2. After the initial transient the sum of pendula's displacements 12 ϕϕ +  fluctuates 
around constant averaged value >+< 12 ϕϕ  close to -3π/2 as shown in Figure 20(a). We call 
this type of synchronization the third-quarter-synchronization (3Q). When pendulum 1 passes 
through the static equilibrium position pendulum 2 approaches the horizontal plane of 
symmetry (ϕ1 = 0 ⇒ ϕ2 ≈ -3π/2).  

 
Figure 19. Mirror-synchronization (M) and antiphase-synchronization (A) of 2 pendula; (a) 
pendula's velocities during mirror-synchronization, kx=500, ϕ10=0, ϕ20=-π/4; (b) pendula's 

displacements during mirror-synchronization, kx=500, ϕ10=0, ϕ20=-π/4; (c) pendula's 
velocities during antiphase-synchronization, kx=500, ϕ10=0, ϕ20=-1.19; (d) pendula's 

displacements during antiphase-synchronization, kx=500, ϕ10=0, ϕ20=-1.19. 
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Figure 20. Third-quarter-synchronization (3Q) and first-quarter-synchronization (1Q) of 2 
pendula; (a) pendula's displacements during third-quarter-synchronization: kx=3000.0, ϕ10=0, 

ϕ20=-3π/2; (b) pendula's displacements during first-quarter-synchronization: kx=3000.0, 
ϕ10=0, ϕ20=-π. 

 
Figure 21. The influence of the stiffness coefficient kx on the type of synchronization of 2 
pendula: (a) average value of the sum of the pendula's displacements <ϕ2+ϕ1> versus kx: 

ϕ10=0, ϕ20=-3π/2; (b) average value of the sum of the pendula's displacements <ϕ2+ϕ1> versus 
kx: ϕ10=0, ϕ20=-π; (c) mirror- and antiphase- synchronization for different initial conditions: 
kx=500; (d) third- and first- quarter-synchronization for different initial conditions: kx=3000. 
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Figure 22. Different types of  synchronization of 2 pendula versus stiffness coefficient kx and 
initial position of pendulum 2 ϕ20: initial position of pendulum 1 ϕ10=0. 

For different initial conditions: ϕ10=0, ϕ20=-π/2, after the initial transient the sum of 
pendula's displacements 12 ϕϕ +  fluctuates around constant averaged value >+< 12 ϕϕ  closed 
to -π/2 as shown in Figure 20(b). This type of synchronization has been called the first-
quarter-synchronization (1Q). When pendulum 1 passes through the static equilibrium 
position pendulum 2 leaves the horizontal plane of symmetry (ϕ1=0 ⇒ ϕ2≈-π/2). The 
pendula's configurations during (1Q) and (3Q) synchronizations are shown at diagrams in 
Figure 13(a,b). (3Q) and (1Q) synchronizations are not observed when one neglects the effect 
of gravity or when the pendula rotate in the horizontal plane. In both cases the pendula's 
velocities oscillate around the initial values ሶ߮ ଵே and ሶ߮ ଶே as in the examples shown in Figure 
12(a,c). 

The influence of the stiffness coefficient kx and initial conditions on the type of 
synchronization is discussed in Figure 21(a-d). Figure 21(a) presents the averaged value of the 
sum of pendula's displacements <ϕ2+ϕ1> versus stiffness coefficient kx. For all values of kx 
the motion of the system is initiated from the same initial conditions. In Figure 21(a) we show 
the averaged value of the sum of pendula's displacements <ϕ2+ϕ1> versus the stiffness 
coefficient kx for the following initial conditions: ϕ10=0, ϕ20=-3π/2. One can see that for the 
small values of the stiffness coefficient kx<360.0, the value of <ϕ2+ϕ1>=0 and the system is in 
the state of mirror-synchronization (M). For kx=360.0 the value of <ϕ2+ϕ1> jumps to -π and in 
the interval 360.0<kx<1910.0 we observe antiphase-synchronization (A). For kx =1910.0 the 
next jump of <ϕ2+ϕ1> (to the value of -4π/3) occurs and the type of synchronization is 
changed to the third-quarter-synchronization (3Q). In the interval 1910.0<kx<5000.0 [N/m] in 
the state of the third-quarter-synchronization (3Q) the value of <ϕ2+ϕ1> initially decreases 
down to the value -1.41π and later increases up to the value -π, so we observe the return to the 
state of antiphase-synchronization (A). Figure 21(b) shows the value of <ϕ2+ϕ1> versus kx for 
different initial conditions (we change the value of ϕ20 from ϕ20=-3π/2 to ϕ20=3π/2). As in 
Figure 21(a) for small values of kx first we observe the state of the mirror-synchronization (M) 
and next the antiphase-synchronization (A). The jump of the value of <ϕ2+ϕ1> to -0.65, 
observed for kx =1960.0, indicates the change of the type of synchronization to the first-
quarter (1Q). In the interval 1960.0<kx<5000.0 in the state of the first-quarter-
synchronization, the value of <ϕ2+ϕ1> initially increases up to -0.57 and next decreases down 
to -π, so we observe the return to the state of antiphase-synchronization (A). Figure 21(c) 
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presents the influence of the initial conditions ϕ10 and ϕ20 on the type of synchronization for 
the small value kx=500.0 (types (M) and (A) are observed) while Figure 21(d) shows basins of 
(3Q) and (1Q) for large value of  kx=3000.0. 

The influence of the stiffness coefficient kx and initial position of pendulum 2 - ϕ20 on 
the type of synchronization is discussed in Figure 22. We assume the initial position of the 
pendulum 1 - ϕ10=0. One can see that for small values of the stiffness coefficient kx<425.0 
and any value of ϕ20 the mirror-synchronization (M) occurs. In the interval 425.0<kx<760.0, 
depending on  initial condition ϕ20 one observes mirror (M) or antiphase (A) synchronization. 
(A) and (M) types of synchronization observed for kx=500.0 are shown in Figure 21(c). In the 
interval 760.0<kx<1960.0 for any value of ϕ20 antiphase-synchronization (A) occurs. For 
kx>1960.0 depending on initial condition ϕ20 we observe the third-quarter (3Q) or the first-
quarter (1Q) synchronization. (1Q) and (3Q) types of synchronization observed for kx=3000.0 
are shown in Figure 21(d). 

 

4.5.  Three pendula rotating in various directions 
In the simulations of the system of three pendula, we use the same parameter values as in 
previous example, and additionally consider p03=-5.00, i.e., pendulum 1 rotates 
counterclockwise and pendula 2 and 3 clockwise. 

Figure 23(a-d) shows time series of the sum of pendula's displacements 12 ϕϕ +  and 

13 ϕϕ +  during four different synchronous states. In Figure 23(a) we present time series for  
the case of small stiffness coefficient kx=200.0, so  ߙ௫ ൌ ඥ200.0/9.0 ൌ 4.71 ൏ 10.0 ൌ ሶ߮ଵே 
and the following initial conditions: ϕ10=0, ϕ20=-π/3, ϕ30=- 4π/3. After the initial transient the 
sum of pendula's displacements 12 ϕϕ +  fluctuates around constant averaged value 
approximately equal to - π/3, and the sum 13 ϕϕ + , fluctuates around the averaged value close 
to -1.66. This type of synchronization we call the tree synchronization (T). The pendula's 
configuration for ϕ1=0 is shown at the diagram in Figure 23(a). Increasing the value of the 
stiffness coefficient to kx=1000.0 (so  ߙ௫ ൌ ඥ1000.0/9.0 ൌ 10.54  10.0 ൌ ሶ߮ଵே and the 
beam oscillations are above the resonance) and changing the initial positions of the pendula to 
ϕ10=0, ϕ20=-π, ϕ30=-π/2 (other initial conditions are the same as in Figure 23(a) one observes 
the synchronous state in which pendula 2 and 3 (rotating to the left) create the cluster (their 
displacements are identical) as shown in Figure 23(b).The sum of the displacements of any 
pendulum in cluster and pendulum 1 12 ϕϕ + = 13 ϕϕ +  fluctuates around constant average 
value < 12 ϕϕ + >=< 13 ϕϕ + > approximately equal to -π and we observe the cluster-antiphase-
synchronization (CA). The pendula's configuration during this type of synchronization for 
ϕ1=0 is shown at the diagram in Figure 23(b). Additionally in the system with three pendula 
one can observe four new types of synchronization which occur due to the existence of 
gravity and the change of the amplitude and phase of the beam's oscillations (as the result of 
the increased value of the stiffness coefficient kx). For kx=3000.0 and initial conditions ϕ10=0, 
ϕ20=-1.38, ϕ30=-1.44, we observe the type of synchronization similar to (T) synchronization 
but with obtuse angles between pendulum 1 and pendula 2,3 as shown at the diagram in 
Figure 23(c). We call this synchronization the yankee 32 (Y32) -synchronization. For different 
initial conditions one can observe the pendula's configuration which is the mirror image of 
(Y32), i.e., pendulum 3 is on the right side and pendulum 2 on the left side of the diagram. 
This configuration is called the yankee 23 (Y23) –synchronization. For the same value of the 
stiffness coefficient kx and initial conditions: ϕ10=0, ϕ20=-1.38, ϕ30=-π we observe the type of 
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synchronization shown in Figure 23(d). This synchronization is similar to (CA) 
synchronization, but the angle between the cluster (of pendula 2 and 3) and pendulum 1 is 
approximately equal to -3π/2 (the cluster-right-synchronization (CR)) or -π/2  (the cluster-
left-synchronization (CL)).  

 
Figure 23: Different types of  synchronization of 3 rotating pendula: (a)  tree synchronization 
(T), kx=200.0[N/m], ϕ10=0, ϕ20=-π/3, ϕ30=-4 π/3; (b) cluster-antiphase-synchronization (CA), 

kx=1000.0[N/m], ϕ10=0, ϕ20=-π, ϕ30=-π/2; (c) yankee-32-synchronization (Y32), 
kx=3000.0[N/m], ϕ10=0, ϕ20=-1.38, ϕ30=-1.44; (d) cluster-right-synchronization (CR), 

kx=3000.0[N/m], ϕ10=0, ϕ20=-1.38, ϕ30=-π. 
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Figure 24: The influence of the stiffness coefficient kx on the type of synchronization of 3 
pendula shown as the average values of the sums of pendula's displacements  <ϕ2+ϕ1> and 
<ϕ3+ϕ1> versus kx: (a) ϕ10=0, ϕ20=-0.75, ϕ30=-1.87; (b) ϕ10=0, ϕ20=-0.75, ϕ30=-π; (c) ϕ10=0, 

ϕ20=-0.75, ϕ30=-0.44; (d) ϕ10=0, ϕ20=-0.75, ϕ30=-0.22. 
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Figure 25: Dependence of the type of synchronization on the stiffness ratio kx and initial 
conditions: (a) type of synchronization versus kx and ϕ30: ϕ10=0, ϕ20=-0.75; A-A cross-section 
of map (c); (b) the enlargement of map (a) for small values of kx, B-B cross-section map (d); 
(c) the type of synchronization for different initial conditions ϕ20 and ϕ30; ϕ10=0, kx=3000, C-
C cross-section map (a); (d) the type of synchronization as function ϕ20 and ϕ30; ϕ10=0, kx = 

325, D-D cross-section map (b). 

 

 
Figure 24(a-d) shows the influence of stiffness coefficient kx on the type of the 

synchronous state. The averaged values of the sums of pendula's displacements < 12 ϕϕ + > and 
< 13 ϕϕ + > versus kx are shown. For all values of kx the motion of the system is initiated from 
the same initial conditions. In the system with small stiffness coefficient kx one observes (T) 
type synchronization as can be seen in Figure 24(a-d). For larger values of kx we observe (CA) 
synchronization and finally for kx>2200÷2400 (exact value depends on φ30) two other types of 
synchronization (CR) and (Y32) and their mirror images (CL) and (Y23) are possible. Figure 
24(a-d) shows that the values < 12 ϕϕ + > and < 13 ϕϕ + > are changing with the change of kx, so 
the descriptions of the pendula's configurations in different types of synchronizations with the 
statements about the angles close to π in the case of (CA) or 3π/2  and π/2  in the case of (CR) 
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and (CL) present only the qualitative differences. Particularly in Figure 24(c) the distinction 
between (CA) and (CL) synchronization is arbitrary, due to the continuous change of the angle 
between cluster (pendula 2 and 3) and pendulum 1. In the other cases the distinction between 
different types of synchronization is justified by the jump changes of angles < 12 ϕϕ + > and 
(or) < 13 ϕϕ + >. The cross sections shown in Figure 24(a-d) are indicated in Figure 25(a). 
Figure 25(a) shows the basins of existence of different types of synchronization on the plane 
kx-ϕ30. We consider the following initial conditions ϕ10=0, ϕ20=-1.75. Figure 25(b) shows the 
enlargement of Figure 25(a) for 200<kx<400. From Figure 25(a,b) one can conclude that for 
stiffness coefficient kx<2200÷2400 one can observe either (T) (kx<300÷370) or (CA) 
synchronization (300÷370<kx<2200÷2400). The type of synchronization depends on the value 
of kx only in the neighborhood of the boundaries between basins (T) and (CA) as shown in 
25(b) and 25(d). Figure 25(d) presents the cross section of Figure 25(b) on level kx=325 which 
shows the coexistence of (T) and (CA) synchronizations for different initial conditions ϕ20 and 
ϕ30. For larger values of kx we observe the coexistence of four types of synchronization as can 
be seen in Figure 25(a,c). Figure 25(c) is the cross section of Figure 18(a) at level kx=3000.  

 

4.6. Large system of pendula rotating in different directions 
In an attempt to generalize the results of previous sections to the system with larger number of 
pendula we perform simulations of such systems. In Figure 26(a) we show the sums of 
pendula's displacements 1ϕϕ +i (i=2…6) for the system with small stiffness kx=200.0. The 
following initial conditions have been used: ϕ10=0, ϕ20=-0.16, ϕ30=-0.32, ϕ40=-0.48, ϕ50=-
0.64, ϕ60=-0.80. One can see that after the initial transient (several rotations) the sums of 
pendula's displacements fluctuate around constant values close to 0, ±π and ±2π/3. This type 
of synchronization is equivalent to the tree-synchronization (T). Figure 26(b) presents that the 
increase of the stiffness coefficient to kx=2000.0 leads to the change of the type of 
synchronization to the cluster-antiphase (CA). Figure 26(c,d) shows that with further increase 
of the stiffness coefficient, e.g. to the value kx=3000.0 the type of synchronization depends on 
the initial conditions as one can observe either (CL) (Figure 26(c)) or Yankee (Figure 26(d)) 
synchronization.  
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Figure 26: Different types of synchronization for the system with six pendula; (a) pendula's 
displacements during the tree-synchronization, kx=200.0, ϕ10=0, ϕ20=-0.16, ϕ30=-0.32, ϕ40=-

0.48, ϕ50=-0.64, ϕ60=-0.80, (b) pendula's displacements during the cluster-antiphase-
synchronization, kx=2000.0, ϕ10=0, ϕ20=-0.27, ϕ30=-0.55, ϕ40=-0.83, ϕ50=-1.11, ϕ60=-1.38, (c) 
pendula's displacements during the cluster-left-synchronization, kx=3000.0, ϕ10=0, ϕ20=-0.27, 
ϕ30=-0.55, ϕ40=-0.83, ϕ50=-1.11, ϕ60=-1.38,, (d) pendula's displacements during the yankee-

synchronization, kx=3000.0, ϕ10=0, ϕ20=-0.44, ϕ30=-0.52, ϕ40=-π, ϕ50=-3π/2, ϕ60=-1.52. 

 

Generally in the systems with large number of pendula we observe the same types of 
synchronizations as described for three pendula in previous sections. Probability of the 
appearance of the Yankee type of synchronization decreases with the increase of the number 
of pendula. 

 

4.7.  Two pendula with different driving torques, rotating in the same direction 

In the last example, let us consider the case of two pendula with the same lengths and masses 
but with different driving torques. In our numerical simulations eqs.(1,2) have been integrated 
by the 4th order Runge-Kutta method. The obtained results confirmed the existence of the 
phenomenon of phase synchronization in the considered system and allowed the 
determination of phase angles between the synchronized pendula. Additionally, the numerical 
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integration of eqs.(1,2) allows the determination of the basins of attraction of different 
coexisting configurations of the synchronized pendula. We use the following parameters' 
values: l1=l2=5.0, cϕ1=cϕ2= 0.012, m1=m2=1.0, mb=10.0, cx=21.5. In different examples we 
consider two values of kx=2400.0 or 400.0. Pendulum 1 is driven by the torque given by 
p01=5.0, p11=0.4. The parameters of the driving torque of pendulum 2 have been taken as 
control parameters.  

 
Figure 27. Two types of synchronous configurations of identically driven pendula: l1=l2=0.25, 

cϕ1=cϕ2= 0.012, m1=m2=1.0, mb=10.0, cx=21.5, p01=5.0, p11=0.4, p02=5.0, p12=0.4; (a) time series 
of the pendula’ angular velocities ሶ߮ ଵ, ሶ߮ ଶ during the state of complete synchronization 

ሺ߮ଶ െ ߮ଵ ൌ 0ሻ, kx=2400.0, (b) time series of the pendula’ angular velocities ሶ߮ ଵ, ሶ߮ ଶ during the 
state of antiphase synchronization ሺ߮ଶ െ ߮ଵ ൌ 0ሻ, kx=400.0, (c) pendula’ configuration during the 
complete synchronization, (d) pendula’ configuration during the antiphase synchronization, (e) basins 

of attraction of complete and antiphase synchronizations; p01=5.0, p11=0.4, p02=5.0, p12=0.4, ϕ10=0, 
ሶ߮ ଵ ൌ 0, ሶ߮ ଶ ൌ 0, x0=0, ݔሶ ൌ0. 
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Figure 27(a-e) presents two types of the synchronous configurations which have been 

predicted in Sec. 3. In Figure 27(a) we show the time series of the pendula’ angular velocities 
ሶ߮ ଵ, ሶ߮ ଶ during the state of complete synchronization ሺ߮ଶ െ ߮ଵ ൌ 0ሻ obtained for p01=p02=5.0, 

p11=p12=0.4, kx=2400.0. Notice that these velocities are equal ( ሶ߮ ଵ ൌ   ሶ߮ ଶ) and fluctuate (due to 
the gravity and the beam’s oscillations) around the nominal value ሶ߮  ൌ 12.5. The time series 
x is also shown (for better visibility it has been enlarged 5 times). The pendula’ configuration 
during this type of synchronization is shown in Figure 27(c). Figure 27(b) shows the time 
series of the pendula’ angular velocities ሶ߮ ଵ, ሶ߮ ଶ during the state of antiphase synchronization 
ሺ߮ଶ െ ߮ଵ ൌ 0ሻ obtained for p01=p02=5.0, p11=p12=0.4, kx=400.0. These velocities fluctuate 
around nominal value ሶ߮  ൌ 12.5 and the fluctuations are in the antiphase. The difference 
between the pendula’ displacements fluctuates around mean value equal to π, i.e., ሺ߮ଶ െ ߮ଵ ൎ
 ሻ. The amplitudes of the beam’s oscillations are much smaller than in the previous case. Theߨ
pendula’ configuration during this type of synchronization is shown in Figure 27(d). In Figure 
27(e) we show the basins of attraction of different types of synchronization. The basins of 
complete and antiphase synchronizations are shown respectively in white and red colors. The 
basins are presented in the plane showing the stiffness coefficient kx versus initial value of 
displacement ϕ20. The rest of the initial conditions are as follows ϕ10=0, ሶ߮ ଵ, ሶ߮ ଶ ൌ 0, x0=0, 
ሶݔ ൌ0. For small values of kx, (smaller than 19) the system reaches the state of antiphase 
synchronization for all values of ϕ20. Similarly in the interval  1600<kx<4680 independently 
of ϕ20 we observe complete synchronization. In the intervals 760<kx<1600 and 4680<kx<8000 
the type of synchronous configuration depends on ϕ20. These results can be compared to that 
of [5]. On the base of analytical analysis he has shown that the basin boundary between 
complete and antiphase synchronization is determined by the constant value of kx 

(independent of initial conditions), for which angular velocity ሶ߮ ଵ,ଶ ൌ
బభ
భభ

ൌ 12.5 is the 
resonant frequency of the linear oscillator consisting of the spring with stiffness coefficient kx 
and mass mb=10.0. For the considered parameters’ values it is equal to kx=10.0×12.52=1560.0. 
This criterion is indicated in Figure 27(e) by the horizontal line. 

In further studies we consider the pendula which are driven by different torques. In 
Figure 28(a) we show the time series of the pendula’ angular velocities ሶ߮ ଵ, ሶ߮ ଶ during the state 
of almost complete synchronization ሺ߮ଶ െ ߮ଵ ൎ 0ሻ obtained for: p01=5.0, p11=0.4,  p02=3.75, 
p12=0.3. Notice that the values of the parameters are different but the ratios are the same 
ሶ߮ ଵ,ଶ ൌ

బభ
భభ

ൌ బమ
భమ

ൌ 12.5. In comparison to the case of Figure 27(a) we observe only small 
differences in angular velocities of both pendula. With the increase of p12 (the decrease of the 
nominal angular velocity ሶ߮ ଶே of pendula 2) these differences increase and the phase shift 
between pendula becomes clearly visible. Finally, for p12=0.355 synchronization mechanism 
based on the energy transfer between the pendula (via the beam) fails and the synchronization 
is no longer observed and we observe the quasiperiodic motion. The example of quasiperiodic 
motion is shown in Figure 28(b) for p12=0.36. The action of the synchronization mechanism is 
still visible. The energy transfer from pendulum 1 to pendulum 2 tries to increase the angular 
velocity of pendulum 2 and allows both pendula to rotate with the same velocity. This action 
is manifested by long intervals in which the difference of pendula’ displacements ϕ2-ϕ1 
fluctuates between constant values. However, the energy transfer is not sufficient and we 
observe the rapid increase (nearly a jump) of the difference ϕ2-ϕ1 by 2π. One can say that at 
some instances pendulum 2 loses one rotation in comparison to pendulum 1. Figure 28(c) 
presents the pendula’ and the beam energy balances versus parameter p12. Pendulum 1 
increases the common angular velocity to the value larger than the nominal velocity ሶ߮ ଶ of 
pendulum 2 so the value of energy W2

DRIVE decreases up to W2
DAMP (for p12=0.319), energy 
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W2
SYN becomes zero and takes no part in the excitation of the beam’s oscillations. Next 

energy W2
SYN becomes negative, i.e., the driver torque of pendulum 2 supplies less energy 

than the energy dissipated by the damper of pendulum 2. To keep both pendula rotating with 
the same velocity pendulum 1 has to supply energy to pendulum 2. The energy W1

SYN is 
divided between the beam and pendulum 2, i.e., pendulum 1 drives both the beam and 
pendulum 2. Figure 28(d) presents the example of the energy balance for the case with 
negative W2

SYN for p12=0.33.  

 

 
Figure 28. Almost complete synchronization in the system with pendula with different driving 

torques: ሶ߮ ଵ ൌ 12.0, p01=5.0, p02=3.75, p11=0.4; (a) time series of the pendula’ angular 
velocities ሶ߮ ଵ, ሶ߮ ଶ during the state of almost complete synchronization ሺ߮ଶ െ ߮ଵ ൎ 0ሻ, p12=0.3, 

(b) time series of the pendula’ angular velocities ሶ߮ ଵ, ሶ߮ ଶ at the threshold between almost 
complete synchronization and quasiperiodic motion, p12=0.356; (c) energy balance of the 

system versus p12, (d) the example of the energy balance in the case when W2
SYN<0. 
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Figure 29. Bifurcation diagrams: ሶ߮ ଵ, ሶ߮ ଶ (at the time instances when pendulum 1 passes 

through the equilibrium position, i.e., when ϕ1= 2πj, j=1,2,…) versus p12: kx=2400.0, p01=5.0, 
p11=0.4, p02=3.75; ϕ10=0, ሶ߮ ଵ ൌ 0, ሶ߮ ଶ ൌ 0, x0=0, ݔሶ ൌ 0; (a) the value of p12 is increased 

from 0.3 to 0.8 and next decreased from 0.8 to 0.3, the intervals of 1/1 almost complete 
synchronization and intervals of 1/2, 1/3, 2/3, 3/4 synchronizations are indicated, (b) the value 

of p12 is decreased from 0.3 to 0.05, interval of 1/1 almost complete synchronization is 
indicated, (c) the value of p12 is increased from 0.05 to 0.3, intervals of 3/1, 2/1 and 1/1 

synchronizations are indicated. 
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Figure 30. The examples of different types of system behaviors shown in Figure 29(a-c): 
ሶ߮ ଵ ൌ 12.0, kx=2400.0, p01 =5.0, p11=0.4, p02 =3.75; (a) time series of the pendula’ angular 
velocities ሶ߮ ଵ, ሶ߮ ଶ during the state of 3/1 synchronization, p12=0.088, ϕ10=0, ሶ߮ ଵ ൌ 12.0, 

ϕ20=1.57, ሶ߮ ଶ ൌ 2.0, x0=0, ݔሶ ൌ0, (b) time series of the pendula’ angular velocities ሶ߮ ଵ, ሶ߮ ଶ 
during the state of almost complete synchronization ሺ߮ଶ െ ߮ଵ ൎ0) 1/1 synchronization 

(coexisting with 3/1 synchronization),  p12=0.088, , ϕ10=0, ሶ߮ ଵ ൌ 12.0, ሶ߮ ଵ ൌ 14.8, ϕ20=1.80, 
ሶ߮ ଶ ൌ 13.2, x0=0.05, ݔሶ ൌ 0.95, (c) time series of the pendula’ angular velocities ሶ߮ ଵ, ሶ߮ ଶ 

during the state 1/3 synchronization,  p12=0.76, ϕ10=0, ሶ߮ ଵ ൌ 0, ϕ20=1.57, ሶ߮ ଶ ൌ 0, x0=0.0, 
ሶݔ ൌ 0, (d) Poincare map of quasiperidic motion, p12=0.36, ϕ10=0.0, , ሶ߮ ଵ ൌ 2.0, ϕ20=0.0, 

ሶ߮ ଶ ൌ 2.0, x0=0, ݔሶ ൌ0. 
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Figure 31. Bifurcation diagrams: ሶ߮ ଵ, ሶ߮ ଶ (at the time instances when pendulum 1 passes 
through the equilibrium position, i.e., when ϕ1= 2πn) versus p12, kx=2400.0, p01 =5.0, p11=0.4, 

p02 =0.36; (a) the value of p12 is increased from 0.15 to 0.8, ϕ10=0, ሶ߮ ଵ ൌ 12.0, ϕ20=0, 
ሶ߮ ଶ ൌ 0, x0=0, ݔሶ ൌ 0, (b) the value of p12 is decreased from 0.15 to 0.05, ϕ10=0, ሶ߮ ଵ ൌ 12.0, 
ϕ20=0, ሶ߮ ଶ ൌ 2.0, x0=0, ݔሶ ൌ 0, (c) the value of p12 is increased from 0.05 to 0.15, ϕ10=0, 

ሶ߮ ଵ ൌ 36.0, ϕ20=0, ሶ߮ ଶ ൌ 36.0, x0=0, ݔሶ ൌ 0. 
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Figure 32: The examples of different types of coexisting attractors shown in Figure 31(a-c): 
kx=2400.0, p01 =5.0, p11=0.4, p02 =0.36, p12=0.068; (a) time series of the pendula’ angular 

velocities ሶ߮ ଵ, ሶ߮ ଶ during the state of 1/1 almost synchronization, p12=0.088, , ϕ10=0, ሶ߮ ଵ ൌ 0, 
ϕ20=3.14, ሶ߮ ଶ ൌ 18.0, x0=0, ݔሶ ൌ 0, (b) time series of the pendula’ angular velocities ሶ߮ ଵ, ሶ߮ ଶ 
during the state of 2/1 synchronization, ϕ10=0, ሶ߮ ଵ ൌ 0, ϕ20=3.14, ሶ߮ ଶ ൌ 24.0, x0=0, ݔሶ ൌ 0, 

(c) time series of the pendula’ angular velocities ሶ߮ ଵ, ሶ߮ ଶ during 0/1 state, ϕ10=0, ሶ߮ ଵ ൌ 0, 
ϕ20=1.57, ሶ߮ ଶ ൌ 0, x0=0, ݔሶ ൌ 0, (d) basins of attraction of the attractors of (a-c), ϕ10=0.0, , 

ሶ߮ ଵ ൌ 12.0, x0=0, ݔሶ ൌ0. 
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Figure 33. Type of synchronization for different values of driving torques: map p02 versus p12, 
initially the driving torques of both pendula are identical p01=p02=5.0, p11=p12=0.4, ϕ10=0, 
ሶ߮ ଵ ൌ 12.0, ϕ20=0, ሶ߮ ଶ ൌ 12.0, x0=0, ݔሶ ൌ 0 (in the initial moment both pendula are passing 

through the equilibrium with the same angular velocity equal to ଵ
ଶ
ሶ߮ ଵ and after the transient 

the system reaches 1/1 complete synchronization). 
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Figure 34. Bifurcation diagrams: ሶ߮ ଵ, ሶ߮ ଶ (at the time instances when pendulum 1 passes 

through the equilibrium position, i.e., when ϕ1= 2πj, j=1,2,…) versus p12: kx=400.0, p01=5.0, 
p11=0.4, p02=3.75; ϕ10=0, ሶ߮ ଵ ൌ 0, ሶ߮ ଶ ൌ 0, x0=0, ݔሶ ൌ 0; (a) the value of p12 is increased 
from 0.3 to 0.8 and next decreased from 0.8 to 0.3, the intervals of 1/1 almost complete 

synchronization and intervals of 1/2, 1/3, synchronizations are indicated, (b) the value of p12 is 
decreased from 0.3 to 0.05 and next increased from 0.05 to 0.3, intervals of 3/1, 3/1, 2/1 and 

3/2 synchronizations are indicated. 
 

The bifurcation diagrams shown in Figure 29(a-c) describe the behavior of the system 
with drive torques (p01=5.0, p11=0.4, p02=3.75) in the wide range of the values of p12. We 
show the values of ሶ߮ ଵ, ሶ߮ ଶ (at the time instances when pendulum 1 passes through the 
equilibrium position, i.e., when ϕ1=2πj, j=1,2,…) versus p12. The calculations have been 
started with the state of complete synchronization. The diagram of Figure 29(a) has been 
calculated for increasing values of p12 in the interval [0.3, 0.8]. The single lines determine the 
regions of synchronization while the blurred columns of markers indicate the lack of 
synchronization. One can observe the following types of synchronization: (i) 1/1 almost 
complete synchronization for 0.3<p12<0.355,(ii) 1/2 synchronization for 0.5<p12<0.58, (iii) 
1/3 synchronization for 0.75<p12<0.78, (iii) 2/3 synchronization for 0.41<p12<0.44, (iv) 3/4 
synchronization for 0.78<p12<0.396. Symbol 1/1 indicates that pendulum 2 rotate with the 
same mean angular velocity as pendulum 1, i.e., in the time interval of one rotation of 
pendulum 2 pendulum 1 performs one rotation, and the symbol r/q, where r,q=2,3 indicates 
that in the time interval of r rotation of pendulum 2 pendulum 1 performs q rotations. r/q 
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synchronous regions exist in the windows in the interval of existence of quasiperiodic regime. 
Our numerical calculations indicate that such windows (most of them very small) are dense in 
the considered interval. In the range 0.3<p12<0.8 we have not observed other attractors 
coexisting with those shown in Figure 29(a). The decrease of the values p12 from 0.8 to 0.3 
gives an identical bifurcation diagram as in the case of the increase. The bifurcation diagram 
of Figure 29(b) has been calculated for the decreasing values of p12 (from 0.3 to 0.05). One 
observes 1/1 almost complete synchronization in the whole interval 0.3> p12>0.05. The 
increase of p12 from 0.05 to 0.5 allows the calculation of Figure 29(c). In the interval 
0.05<p12<0.16 we observe different behavior to that shown in Figure 29(b), which indicates 
the coexistence of different attractors, e.g.; in the interval 0.085<p12<0.09 we have the 
coexistence of 1/1 and 3/1 synchronizations and in the interval 0.114<p12<0.155 synchronous 
configurations 1/1 and 2/1 coexist. One can also observe the coexistence of 1/1 
synchronization (shown in Figure 29(b)) and quasi-periodic rotations. Figure 30(a-c) shows 
the examples of time series of the pendula’ angular velocities ሶ߮ ଵ, ሶ߮ ଶ showing different types 
of synchronizations. Figure 30(a) presents time series during 3/1 synchronization for 
p12=0.088 (as shown in Figure 29(c)). In Figure 30(b) 1/1 synchronization (which coexists 
with quasiperiodic behavior for p12=0.088) is described. 1/3 synchronization for p12=0.76 is 
illustrated in Figure 30(c) (compare with Figure 29(a)). Poincare map of the quasiperiodic 
behavior is shown in Figure 30(d) (p12=0.36). Notice that the points of the map forms closed 
curve with the complicated structure. 

The bifurcation diagrams shown in Figure 31(a-c) for the pendula which are driven by 
different torques. We take p01=5.0, p11=0.4 (as in calculations shown in Figure 29(a-c)) but 
consider different value of p02=0.36. Note that in this case the value of maximum 
dimensionless torque which can be generated by the driving device p02 is smaller than the 
maximum value of the torque generated by the weight of pendulum 2 (equal to m2gl2). This 
indicates that there exist initial conditions for which pendulum 2 stops to rotate at ϕ2crit given 
by relation m2 gl2sinϕ2crit=p02. Calculating the diagram shown  in Figure 31(a) we increase the 
value of p12 in the interval [0.15, 0.8] and observe three basic types of system (3,4) behavior: 
(i) 1/1 almost complete synchronization for 0.15<p12<0.22, (ii) quasiperiodic motion 0.228 
<p12<0.272, (iii) the state indicated as 0/1, i.e, pendulum 2 does not rotate (is at rest) in the 
interval 0.272<p12<0.8. In further calculations we decrease the value of p12 from 0.8 to 0.05 
and observe that in the whole interval pendulum 2 is at rest. This indicates that in the whole 
interval 0.15<p12<0.272 there is the coexistence of the state 0/1 with the states shown in 
31(a).When calculating the diagram shown in Figure 31(b) we decrease the value of p12 from 
0.15 to 0.05. In the whole interval one observes 1/1 almost complete synchronization. The 
diagram presented in Figure 31(c) has been calculated for p12 increasing from 0.05 to 0.15. 
Note that in the interval 0.05<p12<0.084 we observe different behavior to that presented in 
Figure 31(b), e.g., very narrow intervals of  4/1 synchronization and 3/1 synchronization and 
for 0.058<p12<0.082 – 2/1 synchronization. Figure 31(a-c) shows that the system (3-4) has the 
following coexisting attractors:(i) for 0.05<p02<0.082 we observe three attractors: 0/1, 1/1 and 
one of the attractors shown in Figure 31(c), (ii) for 0.082<p02<0.272 we have two attractors: 
0/1 and one of the attractors shown in Figure 31(a,b), (iii) for 0.272<p02<0.8 there is only one 
attractor 0/1, i.e., pendulum 2 stops independently of initial conditions. 

In Figure 32(a-c) we show the time series of the pendula’ angular velocities ሶ߮ ଵ, ሶ߮ ଶ for 
different type of coexisting attractors which exist for p12=0.068. Figure 32(a,b) presents 
respectively 1/1 and 2/1 synchronizations. The state 0/1 (with non-rotating pendulum 2) is 
shown in Figure 32(c). The basins of attraction of these attractors are presented in Figure 
32(d). The basins are shown on the plane ϕ20- ሶ߮ ଶ (other initial conditions ϕ10, ሶ߮ ଵ, x0, ݔሶ 0 are 
equal to zero). 
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Figure 33 presents map p02 versus p12 which describes how the type of synchronization 
is changing with the change of the parameters of driving torques. We assume that initially the 
driving torques of both pendula are identical p01=p02=5.0, p11=p12=0.4. We consider the 
following initial conditions: ϕ10=0, ሶ߮ ଵ ൌ 12.0, ϕ20=0, ሶ߮ ଶ ൌ 12.0, x0=0.0, ݔሶ ൌ0, i.e., in the 
initial moment both pendula are passing through the equilibrium with the same angular 
velocity close to ሶ߮ ே and after the transient the system reach 1/1 almost complete 
synchronization. Next, we change (the jump change) the values of parameters p02 and p12. We 
observed the following cases. In the region indicated in white the synchronization 1/1 has 
been preserved. The type of synchronization has been changed (regions indicated by r/q). 
Pendulum 2 stops (black region indicated) as 0/1 or the pendula start to rotate 
quasiperiodically (red region). For example, along line po2=0.9 the system shows 1/1 almost 
complete synchronization or pendulum 2 stops (0/1 configuration) and along the line po2=3.75 
one observes the behavior described in Figure 29(a,c). 

Finally, Figure 34(a,b) presents the bifurcation diagrams calculated in the same way as the 
diagram shown in Figure 29(a-c) but in this case we start with the antiphase synchronization. 
The diagram of Figure 34(a) has been calculated for increasing values of p12 in the interval 
[0.3, 0.8]. One can observe the following types of synchronization: (i) 1/1 complete 
synchronization for 0.3<p12<0.364, (ii) 1/2 synchronization for 0.464<p12<0.488, (iii) 1/3 
synchronization for 0.716<p12<0.744. r/q synchronous regions exist in the windows in the 
interval of existence of quasiperiodic regime. The decrease of values p12 from 0.8 to 0.3 gives 
the identical bifurcation diagram as in the case of the increase. The bifurcation diagram of 
Figure 34(b) has been calculated for decreasing values of p12 (from 0.3 to 0.05). One observes 
1/1 antiphase synchronization in the interval 0.3>p12>0.228. The increase of the values p12 
from 0.05 to 0.3 gives identical bifurcation diagram as in the case of the decrease. Contrary to 
the case when the calculations started from the complete synchronization we have not 
observed the coexistence of attractors.  

In Figure  29(a-c) 31(b,c) and  34(a-b) all presented periodic solutions represents  
resonances on the torus. They originates and terminates as the result of the saddle-node 
bifurcations (as in the classical Arnold's tongues). In Figure 31(a) for 0<p12<0.221 we observe 
1/1 resonance. Next the periodic solution is destroyed in saddle-node bifurcation and we 
observe the small interval of  behavior. Another saddle-node bifurcation leads to 2/1 
resonance and finally after the sequence of period-doubling bifurcations (we observe   4/2, 8/4 
and 16/8  resonances) the system show chaotic behavior. Bifurcations have been identified 
using path following software AUTO-07P and confirmed by the calculations of Lyapunov 
exponents.  
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5. Synchronization extends the life time of rotation 

Synchronization occurs widely in natural and technological world, from the rhythm of 
applause [53], rhythm of the crowd of walkers on the bridge [25,68], flashing of fireflies [11] 
to the nanomechanical or chemical oscillators [67,86], but it has not been shown that the 
synchronization can extend the life time of the desirable behavior of the coupled systems. In 
this section we give evidence that the initial synchronous state extends the lifetime of 
rotational behavior of the coupled pendula in the case when the excitation of one or few 
pendula is suddenly (breakdown of energy supply) or gradually (as the effect of aging and 
fatigue) switched off. We show that for the properly chosen coupling (in our system 
parameters kx and mb) the energy transfer from the excited pendula allow unexcited pendula to 
rotate.  The initial synchronous configuration is replaced by phase synchronization with 
different phase shifts between pendula and the rotational velocity of the synchronized pendula 
is decreased. These two factors can be considered as the indicator of the breakdown of 
excitation in one or few pendula. As a proof of concept we examine the following examples. 
The presented results have been obtained from the numerical integration of equations of 
motion (1,2). 

 

Example 1. Two pendula rotating in the same direction 

In this example we reconsider the system (1,2) consisting of two identical pendula rotating in 
the same direction. We consider system (1-2) with the following parameter values: 
m1=m2=1.00, l1=l2=0.25, cϕ1=cϕ2=0.03 and different values of the  mass of the beam mb and 
the stiffness coefficient kx . The damping coefficient cx has been selected in such a way as to 
be equivalent to the arbitrarily selected logarithmic decrement of damping Δ=ln(1.5) (the 
decrement characteristic for the linear oscillator with mass equal to the total mass of the 
system shown in Figure 3(a) mounted to the spring with the stiffness coefficient kx . The 
excitation parameters of pendulum 1 are equal to p01=5.0, p11=0.2. These parameters of 
pendulum 2, i.e., p02 and p12 are taken as control parameters.  

Figure 35(a-d) presents three different types of synchronous configurations for the 
excitation torques characterized by: p01= p02=5.0, p11= p12=0.2. In Figure  35(a) we show the 
time series of pendula's angular velocities ሶ߮ ଵ, ሶ߮ ଶ for kx=7000 and mb=12 in the state of the 
complete synchronization (C). Angular velocities of both pendula are identical, their 
oscillations are caused by the effect of gravity and oscillations of the beam. The pendula's 
displacements fulfill the relation 012 =−ϕϕ  and the beam performs small periodic 
oscillations (displacement x(t) is magnified 10 times). Additionally, the synchronous 
configuration at the time when the pendula are moving through the lower stable equilibrium is 
shown. Figure 35(b) shows the same time series in the case of antiphase synchronization (A) 
for kx=1000 and mb=16. Pendula's angular velocities ሶ߮ ଵ, ሶ߮ ଶ oscillate around the same mean 
value. The phase shift between these oscillations is equal to π. The phase shift between 
pendula's displacements 12 ϕϕ −  oscillate around π (i.e., ߮ଶ െ ߮ଵ െ ߨ ൌ 0). The amplitudes 
of the beam's oscillations are smaller than in the case of complete synchronization. In Figure 
35(c) both pendula perform quasiperiodic rotations for kx=6500 and mb=17. The pendula's 
average angular velocities (calculated for the large number of rotations) are equal, so the 
pendula perform the same number of rotations in the given time. As both pendula perform the 
same number of rotations in the given time we can call this case  the quasiperiodic 
synchronization (QS). Quasiperiodic oscillations of the pendula's angular velocities are clearly 
visible at the Poincare map shown in Figure 35(d). This map shows the pendula's angular 
velocities  ሶ߮ ଵ, ሶ߮ ଶ versus the phase shifts between pendula's displacements  ߮ଶ െ ߮ଵ െ ߨ ൌ 0 
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calculated at the time when pendulum 1 is moving through the lower equilibrium position 
(i.e., for  ϕ1=2jπ, j+1,2,…). 

 
Figure 35. Time series of pendula's displacements ߮ଵ, ߮ଶ, angular velocities ሶ߮ ଵ, ሶ߮ ଶ and 
beam's displacement x (magnified 10 times): p01=5.0, p11=0.2, p02=5.0, p12=0.2, ϕ10=0, 

ϕ20=0.5π, ሶ߮ ଵ ൌ ሶ߮ ଶ ൌ ݔ ,25 ൌ ሶݔ ൌ 0,  (a) complete synchronization kx=7000.0, mb=12.0, 
(b) antiphase synchronization kx=1000.0, mb=16.0, (c,d) synchronous quasiperiodic rotation 

kx=6500.0, mb=17.0, (d) Poincare map for the case of (c). 
 

Figure 36(a,b) shows the dependence of the synchronous configuration on the 
parameters  kx and mb. The calculations have been performed for  p01=5.0, p11=0.2, p02=5.0, 
p12=0.2 and initial conditions ϕ10=0, ϕ20=0.5π, ሶ߮ ଵ ൌ ሶ߮ ଶ ൌ ݔ ,25 ൌ ሶݔ ൌ 0 (Figure 36(a)) 
and ϕ10=0, ϕ20=0.5π, ሶ߮ ଵ ൌ 25, ሶ߮ ଶ ൌ െ25, ݔ ൌ ሶݔ ൌ 0, i.e., the pendula initially rotate in 
different directions (Figure 36(b)). The regions of complete (C), antiphase (A), quasiperiodic 
(QS) synchronizations are indicated respectively in green, navy blue and violet colors. Notice 
the navy blue – violet band  in the vicinity of the diagonal. In this region the complete 
synchronization (see Figure 36(a)) coexists with either antiphase or quasiperiodic 
synchronization.  

Determination of the domain in parameters space (kx, mb), in which different 
synchronous configurations coexist, is not straightforward and require precise calculations. 
Blekhman [5] suggested that the boundary of the complete and antiphase is given by the 
condition  ሶ߮ ே ൌ p01/p11 = ax, where ax is the resonant frequency of the linear oscillator 
consisting of mass mb+nm suspended on the spring with stiffness coefficient kx. This 
boundary is shown as a black line in Figure 36(a,b). One can see that it is  located away from 
the real boundary as in the considered system dampers dissipate part of the energy supplied by 
the excitation torques. This dissipation causes the reduction of the actual angular velocity of 
the pendula below their nominal velocity ሶ߮ ே ൌ ଵ/ .  

Generally, designing a system supporting the pendula, the weight of the beam mb and 
the stiffness coefficient kx should be chosen in such a way that the resonance frequency of the 
system is smaller than the angular velocity of the pendula to obtain antiphase synchronization 
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or significantly higher than the angular velocity of pendula to achieve complete 
synchronization. Unfortunately, the angular velocity of the pendula can be determined only by 
numerical integration of equations of motion of a particular system (1,2). 

 

Figure 36. The regions of the parameters  kx - mb  space of complete (C) (green), antiphase (A) 
(navy blue), quasiperiodic (QS) (violet) synchronizations for the system of  two identical and 
identically driven pendula rotating in the same direction: p01=5.0, p11=0.2, p02=5.0, p12=0.2, 
(a) ϕ10=0, ϕ20=0.5π, ሶ߮ ଵ ൌ ሶ߮ ଶ ൌ ݔ ,25 ൌ ሶݔ ൌ 0, (b) ϕ10=0, ϕ20=0.5π, ሶ߮ ଵ ൌ 25, ሶ߮ ଶ ൌ

െ25, ݔ ൌ ሶݔ ൌ 0. 

 

Now let us investigate the effect of sudden excitation switch off in one of the 
synchronized pendula, i.e., system (1,2) of two identical and identically driven pendula is in 
the synchronized state and the excitation of pendulum 2 is suddenly switched off.  The results 
of our calculations are shown in Figure 37(a,b) and Figure 38(a-c). Then for given values of 
kx and mb the pendula are in the synchronized state described in Figure 36(a,b) when the 
excitation of pendulum 2 is switched off. After the initial transient pendula reach the state 
described in Figure 37(a,b). In the green and navy blue regions respectively initial complete 
and antiphase synchronization is replaced by the phase synchronization with various phase 
shifts between pendula. In the red region there is no synchronization and pendulum 2 stops. In 
small violet and blue regions we observed respectively quasiperiodic and multiperiodic 
synchronization. In Figure 38(a) we show the time series of pendula's angular velocities 
ሶ߮ ଵ, ሶ߮ ଶ for kx=7000.0, mb=12.0 (point I in Figure 36(a) and 37(a)).  Initially complete 

synchronization (C) is replaced by the phase synchronization with the phase shift between 
pendula equal to 0.4π. The time series for kx=1000.0 and mb=16.0 (point II) is shown in 
Figure 38(b). In this case initially antiphase synchronization (A) is replaced by the phase 
synchronization with the phase shift between pendula equal to 0.7π. In both cases pendulum 1 
transfers sufficient amount of energy to keep pendulum 2 rotating. The phase shifts between 
pendula different from original 0 and π can be taken as indicators of the excitation switch off. 
In region (N) indicated in red color the synchronization is lost. Pendulum 2 slows down and 
finally stops. The time series of pendula's angular velocities ሶ߮ ଵ, ሶ߮ ଶ are shown in Figure 38(c) 
(kx=12000.0, mb=12.0 -  point III). Pendulum 2 performs oscillations caused by the 
oscillations of the beam – x and angular velocity of pendulum 2 oscillates around zero. In 
Figure 37(a,b) one can see small regions (violet) when quasiperiodic synchronization and the 
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synchronization during which pendulum 2 rotates in different direction than the excited 
pendulum 1 occur.  
 The time series showing the transient behavior of pendula's angular velocities ሶ߮ ଵ, ሶ߮ ଶ, 
the difference of pendula's displacement ߮ଶ െ ߮ଵ and beam's displacement x (magnified 100 
times) are shown in Figure 39(a,b). At N=50 the excitation of pendulum 2 is switched off. In 
the case of Figure 39(a) (kx=7000, mb=12)  after the short interval of the lack of 
synchronization the pendula became synchronized again but the phase shift between the 
pendula is larger than zero (phase synchronization with the phase shift equal to 0.4π). In the 
second case (kx=12000, mb=12), when the excitation of pendulum 2 is switched off it stops to 
rotate. Pendulum 2 starts to oscillate as the result of the beam's oscillations x (see the 
fluctuations of the angular velocity ሶ߮ ଶ ). The difference of the angular displacements of the 
pendula ߮ଶ െ ߮ଵ grows to infinity.  
 

 

Figure 37. Synchronous states of the system of  two identical pendula (the excitation of 
pendulum 2 is switched off after time 60N): p01=5.0, p11=0.2, p02=0, p12=0 (the regions in 

parameters  kx - mb  space of synchronous pendula's rotation are shown in green, navy blue and 
violet and the region in which pendulum 2 stops n red colors). (a) ϕ10=0, ϕ20=0.5π, ሶ߮ ଵ ൌ

ሶ߮ ଶ ൌ ݔ ,25 ൌ ሶݔ ൌ 0, (b) ϕ10=0, ϕ20=0.5π, ሶ߮ ଵ ൌ 25, ሶ߮ ଶ ൌ െ25, ݔ ൌ ሶݔ ൌ 0. 
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Figure 38. Time series of pendula's displacements ߮ଵ, ߮ଶ, angular velocities ሶ߮ ଵ, ሶ߮ ଶ and beam's 

displacement x (magnified 100 times): p01=5.0, p11=0.2, p02=0, p12=0, ϕ10=0, ϕ20=0.5π, 
ሶ߮ ଵ ൌ ሶ߮ ଶ ൌ ݔ ,25 ൌ ሶݔ ൌ 0, (the excitation of pendulum 2 is switched off after the time 
60N), (a) phase synchronization with phase shifts between pendula equal to π/4 (initially 

complete synchronization) kx=7000.0, mb=12.0, (b) phase synchronization with phase shifts 
between pendula equal to π/2 (initially antiphase synchronization) kx=1000.0, mb=16.0, (c) 

pendulum 2 stops  kx=12000.0, mb=12.0. 
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Figure 39. Time series showing the transient behavior of pendula's angular velocities ሶ߮ ଵ, ሶ߮ ଶ, 
the difference of pendula's displacement ߮ଶ െ ߮ଵ and beam's displacement x (magnified 100 

times) in the case when the excitation of pendulum 2 is switched off at N=50: p01=5.0, 
p11=0.2, p02=5.0, p12=0.2, p21=p22=0, ߮ଵ ൌ 0, ߮ଶ ൌ

గ
ଶ
, ሶ߮ ଵ ൌ 0, ሶ߮ ଶ ൌ 25, ݔ ൌ ሶݔ ൌ 0, (a)  

kx=7000.0, mb=12.0, (b) kx=12000.0, mb=12.0. 
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Figure 40.  Bifurcation diagrams of pendula's angular velocities ሶ߮ ଵ, ሶ߮ ଶ and the difference of 

pendula's displacement ߮ଶ െ ߮ଵ versus parameter ξ, excitation of pendulum 2 gradually 
decays to zero, i.e., (1-ξ)(p02 – ሶ߮ ଶ p12), (a) kx=7000.0, mb=12.0, ߮ଵ ൌ 0, ߮ଶ ൌ

గ
ଶ
, ሶ߮ ଵ ൌ

0, ሶ߮ ଶ ൌ 25, ݔ ൌ ሶݔ ൌ 0, (b) kx=12000.0, mb=12.0, ߮ଵ ൌ 0, ߮ଶ ൌ
గ
ଶ
, ሶ߮ ଵ ൌ 0, ሶ߮ ଶ ൌ

25, ݔ ൌ ሶݔ ൌ 0, (c) kx=3700.0, mb=18.0,  ߮ଵ ൌ 0, ߮ଶ ൌ
గ
ଶ
, ሶ߮ ଵ ൌ 0, ሶ߮ ଶ ൌ 25, ݔ ൌ ሶݔ ൌ

0. 

 
Now let us consider the case when the excitation of pendulum 2 gradually decays to zero. The 
excitation decay can be described as (1-ξ)(p02 – ሶ߮ ଶp12), where ξ (ߦ א ሾ0,1ሿ) is a control 
parameter. The bifurcation diagrams shown in Figure 40(a,b) present the values of the 
pendula's angular velocities ሶ߮ ଵ, ሶ߮ ଶ (at the moments when pendulum 1 moves through the 
lower equilibrium position) and the difference of pendula's displacement ߮ଶ െ ߮ଵ versus 
parameter ξ. In the case of Figure 40(a) (kx=7000.0, mb=12.0, both pendula are in the state of 
complete synchronization) synchronization is preserved up to the value  ξ=0.85. The phase 
shift between pendula is visible for larger values of ξ (complete synchronization is replaced 
by phase synchronization. In the whole interval of  ξ pendulum 1 transfers enough energy to 
pendulum 2 to ensure the pendula's synchronization. The difference of the pendula's 
displacements ߮ଶ െ ߮ଵ is so small that it is not visible (in the scale of Figure 40(a)).  Figure 
40(b) presents bifurcation diagram for kx=12000.0 and mb=12.0. In this case the phase 
synchronization is observed for ξ<0.95. At this point pendulum 2 stops to rotate (pendulum 1 
is unable to transfer enough energy to keep it rotating) and one observes the increase of the 
difference 12 ϕϕ − . The case of  kx=3700 and mb=18 (point IV in Figure 36(b) and Figure 
37(b) located close to the area of the coexistence of different synchronous configurations) is 
illustrated in Figure 40(c).  In the interval 0.0<ξ<0.49 one observes periodic rotations of the 
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synchronized pendula (with the phase shift larger than zero). For larger values of ξ 
(0.49<ξ<0.70) pendula perform periodic synchronous rotations with higher periods or 
quasiperiodic synchronous rotations.  Further increase of ξ<0.70 stops pendulum 2.  
 

Example 2. Two pendula rotating in different directions 

Let us consider the same system as in Example 1 but assume that pendula rotate in 
different directions. We consider system (1-2) with the following parameter values: 
m1=m2=1.00, l1=l2=0.25, cϕ1=cϕ2=0.03. The excitation parameters of pendulum 1 are equal to 
p01=5.0, p11=0.2. In the initial state it has been assumed that p02=-5.0, p12=0.2, i.e., pendulum 
1 rotates counterclockwise and pendulum 2 rotates clockwise. Later the parameters of 
pendulum 2: p02 and p12 are taken as control parameters.  

 
Figure 41. The regions the parameters space  kx - mb  of mirror M (light red), antiphase 

A (blue), quasiperiodic Q (violet) synchronizations for the system of  two identical and 
identically driven pendula rotating in different directions: p01=5.0, p11=0.2, p02= -5.0, p12=0.2, 

(a) ϕ10=0, ϕ20=0.5π, ሶ߮ ଵ ൌ ሶ߮ ଶ ൌ ݔ ,25 ൌ ሶݔ ൌ 0, (b) ϕ10=0, ϕ20=0.5π, ሶ߮ ଵ ൌ 25, ሶ߮ ଶ ൌ
െ25, ݔ ൌ ሶݔ ൌ 0. 

 
Figure 42. Synchronous states of the system of  two identical pendula rotating in different 

directions (the excitation of pendulum 2 is switched off after the time 60N): p01=5.0, p11=0.2, 
p02=0, p12=0 (the regions in the parameters  kx - mb  space of synchronous pendula's rotation 

are shown in light red, blue and violet and the region in which pendulum 2 stops in red 
colors). (a) ϕ10=0, ϕ20=0.5π, ሶ߮ ଵ ൌ ሶ߮ ଶ ൌ ݔ ,25 ൌ ሶݔ ൌ 0, (b) ϕ10=0, ϕ20=0.5π, ሶ߮ ଵ ൌ

25, ሶ߮ ଶ ൌ െ25, ݔ ൌ ሶݔ ൌ 0. 
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Figure 43. Time series of pendula's displacements ߮ଵ, ߮ଶ, angular velocities ሶ߮ ଵ, ሶ߮ ଶ and 
beam's displacement x (magnified 100 times) for the system of two pendula rotating in 

different directions; ϕ10=0, ϕ20=0.5π, ሶ߮ ଵ ൌ ሶ߮ ଶ ൌ ݔ ,25 ൌ ሶݔ ൌ 0, (a) mirror 
synchronization, both pendula excited: kx=2000.0, mb=20.0, p01=5.0, (b) antiphase 

synchronization, both pendula excited: kx=2000.0, mb=20.0, p01=5.0, p11=0.2, p02=-5.0, 
p12=0.2, (c) initially mirror synchronization, at N=60 the excitation of pendulum 2 switched 

off: kx=2000.0, mb=20.0, p01=5.0, p11=0.2, p02=0.0, p12=0.0, (d) initially antiphase 
synchronization, at n=60 the excitation of pendulum 2 is switched off : kx=2000.0, mb=20.0, 

p01=5.0, p11=0.2, p02=0.0, p12=0.0.  
 
 

To investigate the effect of sudden excitation switch off in one of the synchronized 
pendula we assume that system (1,2) of two identical and identically driven pendula is in the 
synchronized state and the excitation of pendulum 2 is suddenly switched off.  The results of 
our calculations are shown in Figure 41(a,b), 42(a,b) and 43(a-d). For given values of kx and 
mb the pendula are in the synchronized state described in Figure 41(a,b) when the excitation 
of pendulum 2 is switched off. The calculations have been performed for  p01=5.0, p11=0.2, 
p02=-5.0, p12=0.2 and initial conditions ϕ10=0, ϕ20=0.5π, ሶ߮ ଵ ൌ ሶ߮ ଶ ൌ ݔ ,25 ൌ ሶݔ ൌ 0 
(Figure 41(a)) and ϕ10=0, ϕ20=0.5π, ሶ߮ ଵ ൌ 25, ሶ߮ ଶ ൌ െ25, ݔ ൌ ሶݔ ൌ 0, i.e., pendulum 2 
initially rotate in different directions (Figure 41(b)). The regions of mirror M, antiphase A, 
quasiperiodic (QS) synchronizations are indicated respectively in light red, blue and violet 
colors. Notice the navy blue – violet band  in the vicinity of the diagonal in Figure 41(b). In 
this region the antiphase  synchronization (see Figure 41(a)) coexists with either mirror or 
quasiperiodic synchronization. After the sudden breakdown of pendulum 2 excitation 
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synchronization is not lost in the regions indicated in light red, blue (phase synchronization) 
and violet (quasiperiodic synchronization) colors shown in Figure 42(a,b). In the light red and 
blue regions respectively mirror and antiphase synchronization is replaced by the phase 
synchronization with various phase shifts between pendula. In region (N) indicated in red 
color the synchronization is lost. Pendulum 3 slows down and finally stops. In Figure 43(a,c) 
we show the time series of pendula's angular velocities ሶ߮ ଵ, ሶ߮ ଶ for kx=2000.0, mb=20.0 (point I 
in Figure 41(a)).  In the case of Figure 43(a) both pendula are excited and reach the state of 
mirror synchronization. After the switching off of pendula 2 excitation initially mirror 
synchronization (M) is replaced by the phase synchronization with the phase shift between 
pendula equal to π/4 as shown in Figure 43(c). The time series for kx=7000.0 i mb=20.0 (point 
II) is shown in Figure 43(b,d). In this case initially antiphase synchronization (A) (Figure 
43(b)) is replaced by the phase synchronization with the phase shift between pendula equal to 
π/2 as shown in Figure 43(d). In both cases pendulum 1 transfers sufficient amount of energy 
to keep pendulum 2 rotating. The phase shifts between pendula different from original 0 and π 
can be taken as indicators of the excitation switch off. In region (N) indicated in red color the 
synchronization is lost. Pendulum 2 slows down and finally stops.  
 

Example 3. Three pendula rotating in the same direction  

In this section we reconsider system (1,2) consisting of three identical pendula rotating in the 
same direction. The presented results have been obtained from the numerical integration of 
equations of motion (1,2). In this example we consider the system (1-2) with the following 
parameter values: m1=m2=m3=1.00, l1=l2=l3=0.25, cϕ1=cϕ2= cϕ3=0.03. We consider different 
values of the  mass of the beam mb and the stiffness coefficient kx . The damping coefficient cx 
has been selected in such a way as to be equivalent to the arbitrarily selected logarithmic 
decrement of damping Δ=ln(1.5) (the decrement characteristic for the linear oscillator with 
mass equal to the total mass of the system (mb+nm) mounted to the spring with the stiffness 
coefficient kx). The excitation parameters of pendulum 1 are equal to p01= p02=5.0, p11= 
p12=0.2. The excitation parameters of pendulum 3 are initially the same but after N=50 the 
excitation is switched off, i.e., p03=0,  p13=0.2.  

To investigate the effect of sudden excitation switch off in one of the synchronized 
pendula we assume that system (1,2) of three identical and identically driven pendula is in the 
synchronized state and the excitation of pendulum 3 is suddenly switched off.  The results of 
our calculations are shown in Figure 44(a,b), and 45(a-b). Figure 44(a) shows the dependence 
of the synchronous configuration on the parameters  kx and mb. One observes complete (green 
region), Yankee (navy blue region) and quasiperiodic (violet region) synchronous states (all 
pendula are excited). Additionally the synchronization is not observed for kx and mb from the 
red region. Then for  given values of kx and mb the pendula are in the synchronized state 
described in Figure 44(a) when the excitation of pendulum 3 is switched off. After the sudden 
switch off of pendulum 3 excitation synchronization is not lost in the regions indicated if 
Figure 44(b) in green, navy blue (phase synchronization), blue (synchronous state in which 
pendula 1 and 2 create cluster which is in antiphase to nonexcited pendulum 3) and violet 
(quasiperiodic synchronization) colors. In the green and navy blue regions respectively 
complete and Yankee synchronization is replaced by the phase synchronization with various 
phase shifts between pendula. In region (N) indicated in red color the synchronization is lost. 
Pendulum 3 slows down and finally stops. 

The time series showing the transient behavior of pendula's angular velocities 
ሶ߮ ଵ, ሶ߮ ଶ, ሶ߮ ଷ, the differences of pendula's displacements ߮ଶ െ ߮ଵ, ߮ଷ െ ߮ଵ and beam's 

displacement x (magnified 100 times) are shown in Figure 45(a,b). At N=50 the excitation of 



59 
 

pendulum 3 is switched off. In the case of Figure 45(a) (kx=12000, mb=26, point I in Figure 
44(a))  after the short interval of the lack of synchronization the pendula became synchronized 
again but the phase shift between the pendula is larger than zero (phase synchronization with 
the phase shift equal to 0.3π). In the second case (kx=2000, mb=26, point II) shown in Figure 
45(b), when the excitation of pendulum 3 is switched off it stops to rotate. Pendulum 3 starts 
to oscillate as the result of the beam's oscillations x (see the fluctuations of the angular 
velocity ሶ߮ ଷ ). The difference of  angular displacements of the pendula ߮ଷ െ ߮ଵ grows to 
infinity.  

 
Figure 44. Synchronous states in kx – mb parameter space of three pendula rotating in the same 

direction: p01=5.0, p11=0.2, p02=5.0, p12=0.2, p03=p13=0, ߮ଵ ൌ 0, ߮ଶ ൌ
గ
ଶ
, ߮ଷ ൌ ,ߨ ሶ߮ ଵ ൌ

0, ሶ߮ ଶ ൌ ሶ߮ ଷ ൌ 25, ݔ ൌ ሶݔ ൌ 0,(a) all pendula excited, (b) pendulum 3 switched off at N=50. 

 
Figure 45. Time series showing the transient behavior of pendula's angular velocities 
ሶ߮ ଵ, ሶ߮ ଶ, ሶ߮ ଷ, the difference of pendula's displacement ߮ଶ െ ߮ଵ, ߮ଷ െ ߮ଵ and beam's 

displacement x (magnified 100 times) in the case when the excitation of pendulum 3 is 
switched off at N=50: p01=5.0, p11=0.2, p02=5.0, p12=0.2, p03=p13=0, ߮ଵ ൌ 0, ߮ଶ ൌ
గ
ଶ
, ߮ଷ ൌ ,ߨ ሶ߮ ଵ ൌ 0, ሶ߮ ଶ ൌ ሶ߮ ଷ ൌ 25, ݔ ൌ ሶݔ ൌ 0, (a)  kx=12000.0, mb=26.0 (I), (b) 

kx=2000.0, mb=26.0 (II). 
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Example 4. Two pendula with different masses rotating in the same direction  

In this example we consider the case of two pendula with different masses rotating in the 
same direction. Pendulum  1 has mass (1+η)m and pendulum 2 mass (1-η)m, where η is 
constant. Damping coefficients cφ and excitation torques  െ ଵ ሶ߮  are proportional to the 
pendula's masses. In this case equations of motion can be rewritten in the following form: 
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In our numerical calculations we consider the following parameter's values: l=0.25,  m=1.0, cϕ 
= 0.03, p01=5.0, p11=0.2, p02=5.0, p12=0.2. 

Figure 46(a,b) shows the dependence of the synchronous configuration on the 
parameters  kx and mb. The calculations have been performed for initial conditions ߮ଵ ൌ
0, ߮ଶ ൌ 0, ሶ߮ ଵ ൌ 25, ሶ߮ ଶ ൌ 25, ݔ ൌ ሶݔ ൌ 0, (compare with Figure 36(a) and 37(a) 
calculated for η=0). The regions of complete (C), antiphase (A), quasiperiodic (QS) 
synchronizations are indicated respectively in green, navy blue and violet colors. Figure 46(a) 
illustrates the case of  η=0.9 (m1=1.9, m2=0.1). After the initial time 50N the excitation of 
pendulum 2 is switched off. For kx and mb in the green region the synchronization is preserved 
but the complete synchronization (phase shift between pendula equal to zero) is replaced by 
phase synchronization (phase shift larger than zero).  For the wide range kx and mb parameters 
the rotation of both pendula is preserved. Contrary to this for  η=-0.1, i.e., m1=0.9 and m2=1.1 
the  set parameters for which both pendula rotate is very small as shown in Figure 46(b) 
(green region). Notice that in this case the excitation of the heavier pendulum has been 
switched off. With the further increase of pendulum 2 mass we observe the loss of 
synchronization and the unexcited pendulum stops. Figure 47(a,b) shows time series of the 
transient behavior of pendula's angular velocities ሶ߮ ଵ, ሶ߮ ଶ, the difference of pendula's 
displacement ߮ଶ െ ߮ଵ and beam's displacement x (magnified 100 times) in the case when the 
excitation of pendulum 2 is switched off. The case of η=0.9 (m1=1.9, m2=0.1) and mb =12.0, 
kx =7000 (point I in Figure 46(a) is illustrated in Figure 47(a). Both pendula are in the state of 
complete synchronization when at time 20N the excitation of pendulum 2 is switched off. 
After the transient time the system reaches the state of phase synchronization with nonzero 
phase shift between pendula. Notice that this phase shift is smaller than in the case of identical 
pendula (Figure 39(a)). Figure 47(b) shows the case for η=-0.15, i.e., m1=0.85 and m2=1.15. 
At time 20N the excitation of pendulum 2 is switched off. Synchronization and rotation of 
both pendula are preserved but the phase shift 12 ϕϕ − increases to the value larger than π/2. 
Further decrease of η, (down to η=-0.17, i.e., m1=0.83 and m2=1.17) leads to the loss of 
synchronization and pendulum 2 stops.  

 

Example 5. Larger number of pendula  

In the state of complete synchronization the forces with which pendula act on the beam are 
algebraically added so this example can be generalized to the case of any number of pendula 
of total mass equal to 2m. Consider the case of n pendula in the state of complete 
synchronization. The effect of the switch off of the excitation of p pendula is the same as the 
effect of switch off of the excitation of pendulum with mass 2mp/n in the system of two 
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pendula (the second one with mass 2m(n-p)/n). As an example consider the system of 20 
identical pendula rotating in the same direction with masses (m1-20=0.1, mb =12.0, kx =7000) 
shown in Figure 48(a-d). All pendula are in the state of complete synchronization when at 
time 50N the excitation of one (Figure 48(a)), ten (Figure 48(b)), eleven (Figure 48(c)) and 
twelve (Figure 48(d)) pendula is switched off. Up to the case of 11 pendula the initial 
complete synchronization is replaced by the phase synchronization and all pendula rotate. The 
phase shift between the clusters of excited and unexcited pendula increases with the increase 
of the number of unexcited pendula.  When the excitation of the 12-th pendulum is switched 
off the synchronization is lost and all unexcited pendula stop to rotate.  

 
Figure 46. The regions of the parameters kx - mb  space of complete (C) (green), antiphase (A) 
(navy blue), quasiperiodic (QS) (violet) synchronizations for the system of two pendula with 
different masses rotating in the same direction; l=0.25,  m=1.0, cϕ = 0.03, p01=5.0, p11=0.2, 

p02=5.0, p12=0.2, ߮ଵ ൌ 0, ߮ଶ ൌ 0, ሶ߮ ଵ ൌ 25, ሶ߮ ଶ ൌ 25, ݔ ൌ ሶݔ ൌ 0, (a) η=0.9, i.e., m1=1.9 
and m2=0.1, after the initial time equal to 50N, excitation of pendulum 2 is switched off, (b) 
η=-0.1, i.e., m1=0.9 and m2=1.1, after the initial time equal to 50N, excitation of pendulum 2 

is switched off. 

 

 
Figure 47. Time series showing the transient behavior of pendula's angular velocities ሶ߮ ଵ, ሶ߮ ଶ, 
the difference of pendula's displacement ߮ଶ െ ߮ଵ and beam's displacement x (magnified 100 

times) in the case when the excitation of pendulum 2 is switched off: p01=5.0, p11=0.2, 
p02=5.0, p12=0.2, p21=p22=0, ߮ଵ ൌ 0, ߮ଶ ൌ 0, ሶ߮ ଵ ൌ 25, ሶ߮ ଶ ൌ 25, ݔ ൌ ሶݔ ൌ 0,  kx=7000.0, 
mb=12.0, (a) η=0.9 (m1=1.9, m2=0.1) the excitation of pendulum 2 switched off at 20N, (b) η=-

0.15 (m1=0.85, m2=1.15) the excitation of pendulum 2 switched off at 50N. 
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Figure 48. Time series showing the transient behavior of pendula's angular velocities 
ሶ߮ ଵ, … , ሶ߮ ଶ, the difference of pendula's displacement ߮ଵ,…,ଵଽ െ ߮ଶ and beam's displacement x 

(magnified 100 times) in the case when the excitation of a number of pendula is switched off 
for the system of 20 identical pendula with mass m=0.1 rotating in the same direction,  mb 

=12.0, kx =7000, ߮ଵ,…,ଶ ൌ 0, ሶ߮ ଵ,…,ଶ ൌ 25, ݔ ൌ ሶݔ ൌ 0.  After time equal to 50N, 
excitation of some pendula is simultaneously switched off, (a) excitation of pendulum 1 is 
switched off, (b) excitation of ten pendula 1,…,10 is switched off, (c) excitation of eleven 
pendula 1,…,11 is switched off, (d) excitation of twelve pendula 1,…,12 is switched off. 
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Figure 49. Time series showing the transient behavior of pendula's angular velocities 
ሶ߮ ଵ, … , ሶ߮ ଶ, the difference of pendula's displacement ߮ଵ,…,ଵଽ െ ߮ଶ in the case when the 

excitation of a number of pendula is switched off for the system of 20 identical pendula with 
mass m=0.1 rotating in the same direction,  mb =12.0, kx =7000, ߮ଵ,…,ଶ ൌ 0, ሶ߮ ଵ,…,ଶ ൌ
25, ݔ ൌ ሶݔ ൌ 0.  At the moments indicated by the arrows the excitation of a number of 
pendula is switched off, (a) excitation of 11 pendula is switched off at N=50, 60,…150, 

excitation  of the 12-th  pendulum is switched off at N= 300, (b) excitation of 12 pendula are 
switched off for N= 50, 60,…150,160, excitation of the 13-th  pendulum is switched off for 

N=220. 
 

In the considered examples a number of pendula losses excitation simultaneously, if 
the pendula's excitation is switched off one by the scenario can be different. In the case 
described in Figure 49(a,b) (m1-20=0.1, mb =12.0, kx =7000) the excitation is switched off at 
the moments indicated by arrows. In Figure 49(a) eleven pendula are losing excitations in the 
time intervals of 10N starting at 50N. The increase of the phase shift between the clusters of 
excited and unexcited pendula is visible. For N=300 the excitation of the 12-th pendulum is 
switched off leading to the loss of synchronization (12 pendula stop to rotate). Different 
scenario is described in Figure 49(b). The 12-th pendulum loses excitation just after 11-th at 
N=160. Shortly after it 11 pendula (which lost excitation before) stop to rotate but the 12-th 
pendulum still rotates and is phase synchronized with the cluster of 8 excited pendula (the 
phase shift is close to π/4). Later at N=220 the 13-th pendulum loses excitation and two 
clusters of 7 excited and 2 unexcited are created.  

The considered example shows that it is possible to estimate the critical number of 
pendula which excitation can be switched off and the rotation of all of them is preserved. In 
the case when the pendula's excitations are switched off non-simultaneously it is possible to 
observe the case in which unexcited pendula form two groups one of them stops to rotate and 
the second one rotates and is phase synchronized with the excited pendula. 
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6. Discussion and conclusions 
 In the system consisting of globally coupled pendula like the system of horizontally or 

vertically moving beam on which externally excited rotating pendula are mounted (see Figure 
3(a,b)) one can observe both complete and phase synchronization of the pendula. Various 
configurations of phase synchronization are possible. In all cases of phase synchronization, 
the average phase shifts between the pendula are constant and characteristic for obtained 
configuration. As a result of constant acceleration and deceleration of the pendula due to the 
gravity, the instantaneous phase shifts fluctuate around these averages. Similarly to the case of 
oscillating pendula [17,18,37] we observe the creation of the clusters of completely 
synchronized pendula. Contrary to the oscillating case the rotating pendula are not grouped in 
three or five clusters only. 

For some intervals of the system parameters we found the co-existence of different 
stable synchronized states. Such a coexistence has not been reported previously in the context 
of rotating pendula. This coexistence has not been identified in the previous studies [5], as the 
small parameter methods used there, do not allow it. 

Our approximate analytical studies allow the derivation of the conditions for different 
types of synchronous states as well as the equation for estimation of the shifts between the 
phases of the synchronized pendula. This analysis allows to understand the synchronization 
mechanism based on the energy transfer between the pendula via the oscillating beam. Both 
results are in good agreement with numerical results.  

In the system, in which pendula rotate in opposite directions, one can observe a 
number of different types of phase synchronization. During the synchronous motion the 
average (over the period of rotation) value of the sum of angular displacements of pendula 
rotating to the right and left is constant. The approximate analytical studies of synchronization 
moments, i.e., moments responsible for energy transfer between pendula, allow prediction of 
the mirror (M), antiphase (A) synchronization in the system of n=2 pendula and tree (T) and 
cluster antiphase (CA) synchronization in the system of n=3 pendula. These types of 
synchronization occur for both horizontal (without gravity) and vertical (in the gravitational 
field) planes of pendula rotation.  

Numerical simulations confirm the existence of these types of synchronization. In the 
system with two pendula they additionally show that due to gravity, at sufficiently large 
values of the stiffness coefficient of stiffness kx, one can observe two modifications of (A) 
type synchronization, namely the first-quarter (1Q) and the third-quarter (3Q) 
synchronization. In the system with three pendula we show that the analytically predicted tree 
(T) and cluster antiphase (CA) types of synchronization occur independently of the 
consideration of gravity. For pendula rotation in the gravitational field one can also observe, 
for sufficiently large values of the stiffness coefficient kx, two modifications of (T) type, i.e., 
yankee (Y23) and yankee (Y32) synchronization and two modifications (CA) types: (CL) and 
(CR) synchronization.  

The types of synchronization which have been observed for the systems with two and 
three pendula are summarized in Table 3-6.  

The types of synchronous configurations identified for the system of two and three 
pendula can be observed in the systems with larger number of pendula. Contrary to the case of 
oscillating pendulums [21,22] the rotating pendula are not grouped in three or five clusters 
only. The lack of this restriction causes that in the system (1,2) depending on initial condition 
one can observe a great variety of different synchronization configurations. The number of 
configurations grows with a number of pendulums n.  
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The system with identical pendula which rotate with the same (as to the absolute 
values) angular velocities located on the beam mb which can oscillate horizontally (i.e., kx<∞) 
always reaches the state of synchronization. In the case of the non-movable beam mb (kx=∞) 
when the pendula cannot interact as their velocities have the same absolute values and 
constant phase differences between pendula are constant and defined by the initial conditions. 
When the oscillations of the beam mb allow the interaction between pendula the process of 
synchronization is initiated and the phase differences between pendula’s rotations tend to 
some characteristic values, e.g.: 0, π, 2π/3, etc. (in the case of pendula rotating in the 
horizontal plane) or oscillate around these values (in the case of pendula rotating in the 
vertical plane). The lack of synchronization, i.e., a state in which such ϕ2-ϕ1 is not constant or 
aperiodic (when pendula rotate in horizontal plane) is observed in certain ranges of 
parameters in the system of pendula with different masses or different excitation torques 
which rotate with different angular velocities.  

It can be shown that the initial synchronous state extends the lifetime of rotational 
behavior of the coupled pendula in the case when the excitation of one or a few pendula is 
suddenly (breakdown of energy supply) or gradually (as the effect of aging and fatigue) 
switched off. We give evidence that for the properly chosen coupling (in our system 
parameters kx and mb) the energy transfer from the excited pendula allows nonexcited pendula 
to rotate.  The initial synchronous configuration is replaced by phase synchronization with 
different phase shifts between pendula and the rotational velocity of the synchronized pendula 
is decreased. These two factors can be considered as the indicator of the breakdown of 
excitation in one or a few pendula.  

The synchronization states of the externally excited globally coupled pendula (like 
systems of Figure 3(a,b)) are robust as they can be observed on the wide intervals of the 
system parameters. They can be easily observed in experiments [85]. Contrary to this 
statement synchronous rotating states of the sets of parametrically excited pendula (Figure 
3(c)) are stable in the narrow range of control parameters [35,69] and not easily obtained in 
experimental studies. 

 

 

 

Type of 
synchroniza-tion 

Symbol Average rotational 
velocity of pendula 

Average angle of rotation Shown 
on 

Figure 
No. 

Remarks 

1 2 1 2 

complete C ሶ߮  ሶ߮ ϕ ϕ   
antiphase AS ሶ߮  ሶ߮ ϕ ϕ ߨ 9(a,b) (1) 
quasiperiodic QP ሶ߮  ሶ߮  ϕ ϕ  (2) (c,d)35 ߨ
multiperiodic MP ሶ߮  ݀ ሶ߮ ϕ ݀ϕ ߨ 30(a,c) (3) 
Remarks: 
(1) period 1 motion – period equal to the time of one rotation, 
(2) quasiperiodic motion of the system, 
(3) d is the rational number, i.e., if d=e/f in the time of  f rotations of pendulum 1 pendulum 2 
rotates e times. 

Table 3. Types of synchronization of n=2 pendula rotating in the same direction. 
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Type of 
synchro-
nization 

Sym-
bol 

Average rotational 
velocity of pendula 

Average angle of rotation Shown 
on 

Figure 
No. 

Remarks 

1 2 3 1 2 3 

complete C ሶ߮  ሶ߮  ሶ߮ ϕ ϕ ϕ 12(a,b)  
phase A ሶ߮  ሶ߮  ሶ߮  ϕ ϕ

3
ϕ ߨ2

4
  (a,b)11 ߨ3

cluster-
antiphase 

2-1 ሶ߮  ሶ߮  ሶ߮  ϕ ϕ ϕ ߨ  (1) (a,b)13 ߨ

Remarks: (1) Cluster may be formed also by pendula 1 and 3, or pendula 1 and 2 – depending 
on initial conditions. 

Table 4. Types of synchronization of n=3 pendula rotating in the same direction. 
 

Type of 
synchroniza-tion 

Symbol Average rotational 
velocity of pendula 

Average angle of rotation Shown 
on 

Figure 
No. 

Remarks 

1 2 1 2 

mirror M ሶ߮  െ ሶ߮  ϕ െϕ 19(a,b) (1) 
antiphase AO ሶ߮  െ ሶ߮ ϕ െϕെ ߨ 19(c,d) (2) 
third-quarter 3Q ሶ߮  െ ሶ߮ ϕ െϕെ ߨ 20(a) (3) 
first-quarter 1Q ሶ߮  െ ሶ߮  ϕ െϕെ  (4) (b)20 ߨ
Remarks: 
(1) pendula are passing each other on the vertical plane, 
(2) pendula are passing each other on the horizontal plane,  
(3) δ є (π, 3/2π), 
(4) δ є (1/2π, π). 
 

Table 5. Types of synchronization of n=2 pendula rotating in the opposite directions. 
 
 
 
 
 

Type of 
synchro-
nization 

Sym-
bol 

Average rotational 
velocity of pendula 

Average angle of rotation Shown 
on 

Figure 
No. 

Remarks 

1 2 3 1 2 3 

tree T ሶ߮  െ ሶ߮  െ ሶ߮  ϕ െϕെ
1
െϕ ߨ3

1
  (a)23 ߨ3

cluster-
antiphase 

CA ሶ߮  െ ሶ߮  െ ሶ߮  ϕ െϕെ െϕെ ߨ  (1) (b)23 ߨ

cluster- right CR ሶ߮  െ ሶ߮  െ ሶ߮  ϕ െϕെ
3
െϕെ ߨ2

3
 (1 (d)23 ߨ2

cluster-left CL ሶ߮  െ ሶ߮  െ ሶ߮  ϕ െϕെ
1
െϕെ ߨ2

1
 (1  ߨ2

yankee 3-2 Y32 ሶ߮  െ ሶ߮  െ ሶ߮  ϕ െϕെ
1
െϕ ߨ2

1
 (1 (c)23 ߨ2

yankee 2-3 Y23 ሶ߮  െ ሶ߮  െ ሶ߮  ϕ െϕ
1
െϕെ ߨ2

1
 (1  ߨ2

Remarks: 
(1) Exact values of phase shifting between pendula depends on the system parameters – see 
the example on Figure 24. 
 
Table 6. Types of synchronization of n=3 pendula (pendulum 1 rotates in opposite direction 

to pendula 2 and 3). 



67 
 

 
Acknowledgment: This work has been supported by the Foundation for Polish Science, 
Team Programme -- Project  No TEAM/2010/5/5.  
 
References 
 

1. G.L. Baker, J.A. Blackburn, The Pendulum : A Case Study in Physics, OUP, Oxford: 
2005. 

2. J.M. Balthazar, J.L. Palacios Felix, R.M.L.R.F. Brasil,. Some comments on the 
numerical simulation of self-synchronization of four non-ideal exciters. Applied 
Mathematics and Computation, 164 (2005) 615–625. 

3. C. M. Bender, D.D. Holm, W.H. Hook, Complex trajectories of a simple pendulum, J. 
Phys. A: Math. Theor., 40 (2007) F81–F89. 

4. M. Bennett, M.F. Schatz, H. Rockwood, K. Wiesenfeld,  Huygens’s clocks, Proc. R. 
Soc. Lond. A 458 (2002) 563-579. 

5. I.I. Blekhman, Synchronization in Science and Technology, ASME Press, New York: 
1988. 

6. S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, C.S. Zhou, The synchronization 
of chaotic systems, Phys. Rep. 366 (2002) 1-101.  

7. Sz. Boda, Z. Neda, B. Tyukodi, A. Tunyagi, The rythm of coupled metronomes, 
EPJB, 86 (2013) 263. 

8. J.J.H. Brouwers, Asymptotic solutions for Mathieu instability under random 
parametric excitation and nonlinear damping. Physica D, 240 (2011) 990-1000. 

9. P. Brzeski, A. Karmazyn, P. Perlikowski, Synchronization of two forced double-well 
Duffing oscillators with attached pendulums, Journal of Theoretical and Applied 
Mechanics 51(3), (2013) 603-613. 

10. P. Brzeski, P. Perlikowski, S. Yanchuk and T. Kapitaniak, The dynamics of the 
pendulum suspended on the forced Duffing oscillator", Journal of Sound and 
Vibration, 331 (2012) 5347-5357. 

11. J. Buck, E. Buck, Mechanism of synchronous flashing of fireflies, Science, 159 (1968) 
1319-1327. 

12. D. Capecchi, S.R. Bishop, Periodic and non-periodic responses of a parametrically 
excited pendulum, Report 3/1990  of the Dipartimento di Ingegneria delle Strutture, 
delle Acque e del Terreno, Universita‘ dell’Aquila, Italy. 

13. D. Capecchi, S.R. Bishop, Periodic oscillations and attracting basins for a 
parametrically excited pendulum, Dynamics and Stability of Systems, 9 (1994) 123-
143. 

14. M. Clerc, P. Coullet, E. Tirapegu, Lorenz Bifurcation: Instabilities in Quasireversible 
Systems, Phys. Rev. Lett,  88 (1999) 3820-3823. 

15. M.J. Clifford, S.R. Bishop, Rotating periodic orbits of the parametrically excited 
pendulum, Physics Letters A, 201 (1995) 191–196. 

16. K. Czolczynski, Rotordynamics of Gas-Lubricated Journal Bearing Systems, Springer, 
New York: 1999. 

17. K. Czołczyński, P. Perlikowski, A. Stefański, T. Kapitaniak, Clustering of Huygens’ 
Clocks, Progress of Theoretical Physics, 122 (2009) 1027-1033. 

18. K. Czołczyński, P. Perlikowski, A. Stefański, T. Kapitaniak, Clustering and 
Synchronization of Huygens’ Clocks”. Physica A, 388 (2009) 5013-5023. 

19. K. Czolczynski, P. Perlikowski, A. Stefanski and T. Kapitaniak, Synchronization of 
the self-excited pendula suspended on the vertically displacing beam, 



68 
 

Communications in Nonlinear Science and Numerical Simulation 18(2) (2013) 386-
400.  

20. K. Czolczynski, P. Perlikowski, A. Stefanski and T. Kapitaniak, Synchronization of 
slowly rotating pendulums, International Journal of Bifurcation and Chaos, 22 (2012) 
1250128. 

21. K. Czolczynski, P. Perlikowski, A. Stefanski and T. Kapitaniak, Synchronization of 
pendula rotating in different directions, Communications in Nonlinear Science and 
Numerical Simulation, 17 (2011) 3658–3672.  

22. K. Czolczynski, P. Perlikowski, A. Stefanski and T. Kapitaniak: "Why two clocks 
synchronize: Energy balance of the synchronized clocks", Chaos: An Interdisciplinary 
Journal of Nonlinear Science 21 (2011) 023129.   

23. K. Czolczynski, P. Perlikowski, A. Stefanski and T. Kapitaniak, Clustering of non-
identical clocks, Progress of Theoretical Physics,  125 (2011) 1-18.  

24. R. Dilao, Antiphase and in-phase synchronization of nonlinear oscillators: The 
Huygens's clocks system, Chaos 19 (2009) 023118. 

25. B. Eckhardt, E. Ott, S. H. Strogatz, D. Abrams, A. McRobie, Modeling walker 
synchronization on the Millennium Bridge, Phys. Rev. E 75 (2007) 021110.  

26. F.A. El-Barki, A.I. Ismail, M.O. Shaker, T.S. Amer,  On the motion of the pendulum 
on an ellipse, ZAMM, 79 (1999) 65-72. 

27. A. Fillipov, B. Hu, B. Li, A. Zeltser, Energy transport between two attractors 
connected by a Fermi-Pasta-Ulam chain, J. Phys. A: Math. Gen., 31 (1998) 7719. 

28. A.L. Fradkov, B. Andrievsky, Synchronization and phase relations in the motion of 
two-pendulum system, Int. J. Non-linear Mech., 42 (2007)  895-901. 

29. W. Garira, S.R. Bishop, Rotating solutions of the parametrically excited pendulum, 
Journal of Sound and Vibration 263 (2003) 233-239. 

30. Z.-M. Ge, T.-N. Lin, Regular and chaotic dynamic analysis and control of chaos of an 
elliptical pendulum on a vibrating basement, Journal of Sound and Vibration, 230 
(2000) 1045-1068. 

31. A.N. Grib, P. Seidel, J. Scherbel, Synchronization of overdamped Josephson junctions 
shunted by a superconducting resonator, Phys. Rev. B 65 (2002) 4508.1-4508.10. 

32. B. Horton, B. Rotational motion of pendula systems for wave energy extraction, PhD 
Thesis, Aberdeen University: 2008. 

33. C. Huygens, C., Letter to de Sluse, In: Oeuveres Completes de Christian Huygens 
(letters; no. 133 of 24 February 1665, no. 1335 of 26 February 1665, no. 1345 of 6 
March 1665), Societe Hollandaise DesSciences, Martinus Nijhor, La Haye: 1665. 

34. C. Huygens, Horoloqium Oscilatorium, Apud F. Muquet, Parisiis: 1673; (English 
translation: The pendulum clock, Iowa State University Press, Ames: 1985. 

35. M. Kapitaniak, P. Perlikowski and T. Kapitaniak: "Synchronous motion of two 
vertically excited planar elastic pendula", Communications in Nonlinear Science and 
Numerical Simulation 18(8) (2013) 2088-2096. 

36. M. Kapitaniak, P. Brzeski, K. Czolczynski, P. Perlikowski, A. Stefanski and T. 
Kapitaniak, Synchronization thresholds of coupled self-excited nonidentical pendula 
suspended on the vertically displacing beam, Progress of Theoretical Physics 128 
(2012) 1141-1173.  

37. M. Kapitaniak, K. Czolczynski, P. Perlikowski, A. Stefanski and T. Kapitaniak: 
Synchronization of clocks, Physics Reports, 517 (2012) 1-67.  

38. T. Kapitaniak, K. Czolczynski, P. Perlikowski and A. Stefanski, Energy balance of 
two synchronized self-excited pendulums with different masses, Journal of Theoretical 
and Applied Mechanics, 50 (2012) 729-741.  



69 
 

39. B.P. Koch, R.W. Leven, Subharmonic and homoclinic bifurcations in a parametrically 
forced pendulum, Physica D, 16 (1985) 1-13. 

40. P. Kołuda, P. Perlikowski, K. Czołczyński, T. Kapitaniak, Synchronization 
configurations of two coupled double pendula, Communications in Nonlinear Science 
and Numerical Simulation, 19 (2014) 977-990. 

41. M. Kumon, R. Washizaki, J. Sato, R.K.I. Mizumoto, Z. Iwai, Controlled 
synchronizationof two 1-DOF coupled oscillators, Proceedings of the 15th IFAC 
World Congress, Barcelona: 2002. 

42. C.W. Lee, Vibration Analysis of Rotors, Kluwer, New York: 1993. 
43. S. Lenci, G. Rega, Competing dynamic solutions in a parametrically excited 

pendulum: attractor robustness and basin integrity, ASME J. Comp. Nonlin. Dyn., 3 
(2008), 41010 (1-9). 

44. S. Lenci, E. Pavlovskaia, G. Rega, M. Wiercigroch, Rotating solutions and stability of 
parametric pendulum by perturbation method”, Journal of Sound and Vibration, 310 
(2008) 243-259.  

45. S. Lenci, M. Brocchini, C. Lorenzoni, Experimental rotations of a pendulum on water 
waves, ASME J. Comp. Nonlin. Dyn., 7 (2011) 011007. 

46. R.W. Leven, B.P. Koch, Chaotic behaviour of a parametrically excited damped 
pendulum, Phys. Lett. A,  86 (1981)  71-74.  

47. R.J. Lythgoe, Some observations on the rotating pendulum, Nature, 141 (1938) 474. 
48. B.P. Mann, M.A. Koplow, Symmetry breaking bifurcations of a parametrically excited 

pendulum, Nonlinear Dynamics, 46 (2006) 427-437. 
49. E.A. Martens, S. Thutupalli, A. Fourrière, O. Hallatschek Chimera states in 

mechanical oscillator networks, PNAS (2013), http://dx.doi:10.1073/pnas.1302880110 
50. M.R. Matthews, C.F. Gauld, A. Stinner, (eds), The Pendulum: Scientific, Historical, 

Philosophical and Educational Perspectives, Springer, New York: 2005. 
51. A. A. Nanha Djanan, B.R. Nana Nbendjo, P Woafo, Self-synchronization of two 

motors on a rectangular plate and reduction of vibration, Journal of Vibration and 
Control, (2013) doi:10.1177/1077546313506925  

52. A.H. Nayfeh,  D.T. Mook, Nonlinear oscillations, Wiley, New York: 1979. 
53. Z. Neda, E. Ravasz, Y. Brechet, T. Vicsek, A.-L. Barabasi, The sound of many hands 

clapping, Nature, 403 (2000) 849-850 
54. J. Pantaleone, Synchronization of metronomes, Am. J. Phys., 70 (2002) 992-1000. 
55. A.S. de Paula, M.A. Savi, M. Wiercigroch, E. Pavlovskaia, Bifurcation control of a 

parametric pendulum, International Journal of Bifurcation and Chaos, 22 (2012) 
1250111-1-14. 

56. E. Pavlovskaia, B. Horton, M. Wiercigroch, S. Lenci, G. Rega, Approximate 
Rotational Solutions of pendulum under combined vertical and horizontal excitation, 
International Journal of Bifurcation and Chaos, 22 (2012) 1250100. 

57. L.M. Pecora, T.L. Carroll, G.A. Johnson, D.J. Mar, J.F. Heagy, Fundamentals of 
synchronization in chaotic systems, concepts, and applications, Chaos 7 (1997) 520-
543.  

58. J. Pena Ramirez , R.H.B. Fey,  H. Nijmeijer, Synchronization of weakly nonlinear 
oscillators with Huygens' coupling, Chaos 23 (2013) 033118.  

59. P. Perlikowski, M. Kapitaniak, K. Czolczynski, A. Stefanski and T. Kapitaniak: Chaos 
in coupled clocks, International Journal Bifurcation and Chaos 22 (2012) 1250288.  

60. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: An Universal Concept in 
Nonlinear Sciences, Cambridge University Press, Cambridge: 2001 

61. A. Pogromsky, V.N. Belykh, H. Nijmeijer, Controlled synchronization of pendula, 
Proceedings of the 42nd IEEE Conference on Design and Control: 2003, 4381-4385. 



70 
 

62. A. Prasad, Universal occurrence of mixed-synchronization in counter-rotating 
nonlinear coupled oscillators, Chaos, Solitons and Fractals, 43 (2010) 42-46. 

63. M.G. Rosenblum, A.S. Pikovsky, J. Kurths,. Phase synchronization of chaotic 
oscillators. Physical Review Letters. 76 (1996) 1804-1807. 

64. M.G. Rosenblum, A.S. Pikovsky, J. Kurths, From phase to lag synchronization in 
coupled oscilators. Physical Review Letters. 78 (1997)  4193-4196. 

65. C. Qing-Jie, H. Ning, T. Rui-Lan, A Rotating Pendulum Linked by an Oblique Spring, 
Chinese Phys. Lett. 28 (2011) 060502. 

66. M. Senator, Synchronization of two coupled escapement-driven pendulum clocks, 
Journal Sound and Vibration,  291 (2006)  566-603. 

67. S.-B. Shim, M. Imboden, P. Mohanty, Synchronized oscillation in coupled 
nanomechanical oscillators, Science, 316 (2007) 95-99. 

68. S. H. Strogatz, D. M. Abrams, A. McRobie, B. Eckhardt, and E. Ott, Nature, 438 
(2005) 43-44. 

69. J. Strzalko , J. Grabski , J. Wojewoda , M. Wiercigroch, T. Kapitaniak, Synchronous 
rotation of the set of double pendula: Experimental observations, Chaos 22 (2012) 
047503.   

70. D. Sudor, S.R. Bishop, Inverted dynamics of a tilted pendulum, European Journal of 
Mechanics A: Solids, 18 (1999) 517-526. 

71. W. Szemplinska-Stupnicka, E. Tyrkiel, A. Zubrzycki, The global bifurcations that lead 
to transient tumbling chaos in a parametrically driven pendulum”, International 
Journal of Bifurcation and Chaos, 10 (2000),  2161-2175. 

72. W. Szemplinska-Stupnicka, E. Tyrkiel, The oscillation-rotation attractors in the forced 
pendulum and their peculiar properties, International Journal of Bifurcation and Chaos 
12 (2002) 159-168.  

73. J.M.T. Thompson, M. Wiercigroch, J. Sieber, B. Horton, Dynamics of the nearly 
parametric pendulum. International Journal of Non-Linear Mechanics, 46 (2011) 436-
442. 

74. H. Ulrichs, A. Mann, U. Parlitz,  Synchronization and chaotic dynamics of coupled 
mechanical metronomes, Chaos, 19 (2009)  043120. 

75. J.M. Vance, Y. Fouad, F.Y. Zeidan, B. Murphy,  Machinery Vibration and 
Rotordynamics, Wiley, London: 2010. 

76. K. Wiesenfeld, D. Borrero-Echeverry,  Huygens (and others) revisited, Chaos, 21 
(2011) 047515. 

77. Y. Wu, N. Wang, L. Li, J. Xiao, Anti-phase synchronization of two coupled 
mechanical metronomes, Chaos,  22 (2012) 023146. 

78. X. Xu, M. Wiercigroch,  M.P. Cartmell, Rotating orbits of a parametrically-excited 
pendulum, Chaos, Solitons and Fractals, 23 (2005) 1537-1548. 

79. X. Xu, Nonlinear dynamics of parametric pendulum for wave energy extraction, PhD 
Thesis, Aberdeen University: 2005. 

80. X. Xu, M. Wiercigroch, Approximate analytical solutions for oscillatory and rotational 
motion of a parametric pendulum, Nonlinear Dynamics 47 (2007) 311-320. 

81. X. Xu, E. Pavlovskaia, M. Wiercigroch, F. Romeo, S. Lenci,  Dynamic interactions 
between parametric pendulum and electro-dynamical shaker, ZAMM, 87 (2007) 172-
186. 

82. H. Yabuno, M. Miura, N. Aoshima, Bifurcation in an inverted pendulum with tilted 
high frequency excitation: analytical and experimental investigations on the 
symmetry-breaking of the bifurcation, Journal of Sound and Vibration, 273 (2004) 
479-513.  



71 
 

83. D. Yurchenko, P. Alevras, Stochastic dynamics of a parametrically base excited 
rotating, Pendulum, Procedia IUTAM 6 ( 2013 ) 160–168. 

84. D. Yuchenko, A. Naess, P. Alevras, Pendulum’s rotational motion governed by a 
stochastic Mathieu equation. Probabilistic Engineering Mechanics, 31 (2013) 12-18.  

85. M. Lazarek, M. Nielaczny, Synchronization of slowly rotating pendula, M.Sc. Thesis, 
Technical University of Lodz: 2013. 

86. S. H. Strogatz, Sync: The Emerging Science of Spontaneous Order , Penguin Science, 
London, 2004. 

87. P. J. Menck, J. Heitzig, N. Marwan, J. Kurths, How basin stability complements the 
linear-stability paradign, Nature Physics, 9 (2013) doi:10.1038/NPHYS2516. 

88. E. Doedel, B. Oldeman, A. Champneys, F. Dercole, T. Fairgrieve, Y. Kuznetsov, R. 
Paffenroth, B. Sandstede, X. Wang, C. Zhang., AUTO-07P: Continuation and 
Bifurcation Software For Ordinary Differential Equations, Concordia University, 
Montreal, Canada, 2011. 
 

 
 
 

 
 

 

 

 


